13,916 research outputs found

    Dewetting of a solid monolayer

    Full text link
    We report on the dewetting of a monolayer on a solid substrate, where mass transport occurs via surface diffusion. For a wide range of parameters, a labyrinthine pattern of bilayer islands is formed. An irreversible regime and a thermodynamic regime are identified. In both regimes, the velocity of a dewetting front, the wavelength of the bilayer island pattern, and the rate of nucleation of dewetted zones are obtained. We also point out the existence of a scaling behavior, which is analyzed by means of a geometrical model.Comment: to be published in PhysRevLet

    Little IIB Matrix Model

    Full text link
    We study the zero-dimensional reduced model of D=6 pure super Yang-Mills theory and argue that the large N limit describes the (2,0) Little String Theory. The one-loop effective action shows that the force exerted between two diagonal blocks of matrices behaves as 1/r^4, implying a six-dimensional spacetime. We also observe that it is due to non-gravitational interactions. We construct wave functions and vertex operators which realize the D=6, (2,0) tensor representation. We also comment on other "little" analogues of the IIB matrix model and Matrix Theory with less supercharges.Comment: 17 pages, references adde

    Interaction induced dimerization in zigzag single wall carbon nanotubes

    Full text link
    We derive a low-energy effective model of metallic zigzag carbon nanotubes at half filling. We show that there are three important features characterizing the low-energy properties of these systems: the long-range Coulomb interaction, umklapp scattering and an explicit dimerization generated by interactions. The ratio of the dimerization induced gap and the Mott gap induced by the umklapp interactions is dependent on the radius of the nanotube and can drive the system through a quantum phase transition with SU(2)_1 quantum symmetry. We consider the physical properties of the phases on either side of this transition which should be relevant for realistic nanotubes.Comment: 8 pages, 5 figure

    Describing gluons at zero and finite temperature

    Full text link
    Any description of gluons requires a well-defined gauge. This is complicated non-perturbatively by Gribov copies. A possible method-independent gauge definition to resolve this problem is presented and afterwards used to study the properties of gluons at any temperature. It is found that only chromo-electric properties reflect the phase transition. From these the gauge-invariant phase transition temperature is determined for SU(2) and SU(3) Yang-Mills theory independently.Comment: 3 pages, 1 figure. Talk given at "The 5-th International Conference on Quarks and Nuclear Physics", Beijing, China, and at "Quarks, Hadrons, and the Phase Diagram of QCD", St. Goar, Germany, both September 2009. Submitted to the QNP proceeding

    Polaron Induced Deformations in Carbon Nanotubes

    Full text link
    We compute for the first time full elastic deformations, as well as length, of self-trapped electronic states in carbon nanotubes of general radius and chirality, within the unifying framework of a recently introduced two field model for electromechanics of carbon nano-structures. We find that deformations are highly non monotonic in the chiral angle, whereas the length of the polaron is not. Applications include nano-mechanical devices as electrically or optically driven nano-actuators.Comment: 4 Pages, 1 Figure Phys Rev B Brief Repor

    Intersubband Edge Singularity in Metallic Nanotubes

    Full text link
    Tunneling density of states of both the massless and massive (gapped) particles in metallic carbon nanotubes is known to have anomalous energy dependence. This is the result of coupling to multiple low-energy bosonic excitation (plasmons). For both kinds of particles the ensuing effect is the suppression of the density of states by electron-electron interactions. We demonstrate that the optical absorption between gapless and gapped states is affected by the many-body effects in the opposite way. The absorption probability is enhanced compared with the non-interacting value and develops a power-law frequency dependence with the exponent -0.2 for typical nanotubes.Comment: 4 pages, 1 figure (final version, discussion of Sommerfeld factor and Ref. 11 added

    Asymptotic behavior of age-structured and delayed Lotka-Volterra models

    Full text link
    In this work we investigate some asymptotic properties of an age-structured Lotka-Volterra model, where a specific choice of the functional parameters allows us to formulate it as a delayed problem, for which we prove the existence of a unique coexistence equilibrium and characterize the existence of a periodic solution. We also exhibit a Lyapunov functional that enables us to reduce the attractive set to either the nontrivial equilibrium or to a periodic solution. We then prove the asymptotic stability of the nontrivial equilibrium where, depending on the existence of the periodic trajectory, we make explicit the basin of attraction of the equilibrium. Finally, we prove that these results can be extended to the initial PDE problem.Comment: 29 page

    Chiral symmetry analysis and rigid rotational invariance for the lattice dynamics of single-wall carbon nanotubes

    Full text link
    In this paper, we provide a detailed expression of the vibrational potential for the lattice dynamics of the single-wall carbon nanotubes (SWCNT) satisfying the requirements of the exact rigid translational as well as rotational symmetries, which is a nontrivial generalization of the valence force model for the planar graphene sheet. With the model, the low frequency behavior of the dispersion of the acoustic modes as well as the flexure mode can be precisely calculated. Based upon a comprehensive chiral symmetry analysis, the calculated mode frequencies (including all the Raman and infrared active modes), velocities of acoustic modes and the polarization vectors are systematically fitted in terms of the chiral angle and radius, where the restrictions of various symmetry operations of the SWCNT are fulfilled
    • …
    corecore