21 research outputs found

    Radical decisions in cancer: Redox control of cell growth and death

    Get PDF
    Free radicals play a key role in many physiological decisions in cells. Since free radicals are toxic to cellular components, it is known that they cause DNA damage, contribute to DNA instability and mutation and thus favor carcinogenesis. However, nowadays it is assumed that free radicals play a further complex role in cancer. Low levels of free radicals and steady state levels of antioxidant enzymes are responsible for the fine tuning of redox status inside cells. A change in redox state is a way to modify the physiological status of the cell, in fact, a more reduced status is found in resting cells while a more oxidative status is associated with proliferative cells. The mechanisms by which redox status can change the proliferative activity of cancer cells are related to transcriptional and posttranscriptional modifications of proteins that play a critical role in cell cycle control. Since cancer cells show higher levels of free radicals compared with their normal counterparts, it is believed that the anti-oxidative stress mechanism is also increased in cancer cells. In fact, the levels of some of the most important antioxidant enzymes are elevated in advanced status of some types of tumors. Anti-cancer treatment is compromised by survival mechanisms in cancer cells and collateral damage in normal non-pathological tissues. Though some resistance mechanisms have been described, they do not yet explain why treatment of cancer fails in several tumors. Given that some antitumoral treatments are based on the generation of free radicals, we will discuss in this review the possible role of antioxidant enzymes in the survival mechanism in cancer cells and then, its participation in the failure of cancer treatments

    Thioredoxin 1 modulates apoptosis induced by bioactive compounds in prostate cancer cells

    Get PDF
    Accumulating evidence suggests that natural bioactive compounds, alone or in combination with traditional chemotherapeutic agents, could be used as potential therapies to fight cancer. In this study, we employed four natural bioactive compounds (curcumin, resveratrol, melatonin, and silibinin) and studied their role in redox control and ability to promote apoptosis in androgen sensitive and insensitive prostate cancer cells. Here is shown that curcumin and resveratrol promote ROS production and induce apoptosis in LNCaP and PC-3. An increase in reactive species is a trigger event in curcumin-induced apoptosis and a consequence of resveratrol effects on other pathways within these cells. Moreover, here we demonstrated that these four compounds affect differently one of the main intracellular redox regulator, the thioredoxin system. Exposure to curcumin and resveratrol promoted TRX1 oxidation and altered its subcellular location. Furthermore, resveratrol diminished TRX1 levels in PC-3 cells and increased the expression of its inhibitor TXNIP. Conversly, melatonin and silibinin only worked as cytostatic agents, reducing ROS levels and showing preventive effects against TRX oxidation. All together, this work explores the effect of compounds currently tested as chemo-preventive agents in prostate cancer therapy, on the TRX1 redox state and function. Our work shows the importance that the TRX system might have within the differences found in their mechanisms of action. These bioactive compounds trigger different responses and affect ROS production and redox systems in prostate cancer cells, suggesting the key role that redox-related pathways might play in processes like differentiation or survival in prostate cancer. Keywords: Thioredoxin, Thioredoxin reductase, TXNIP, Prostate cancer, Redox signaling, Apoptosi

    Melatonin Enhances Photo-Oxidation of 2 ',7 '-Dichlorodihydrofluorescein by an Antioxidant Reaction That Renders N1-Acetyl-N2-Formyl-5-Methoxykynuramine (AFMK)

    Get PDF
    The indolamine melatonin (MEL) is described as an antioxidant and a free radical scavenger. However occasionally, the indoleamine has been reported to increase free radicals with insufficient mechanistic explanation. In an attempt to find a reason for those controversial results, a potential mechanism that explains MEL prooxidant activity is investigated. The current controversy about redox detection methods has prompted us to search a possible interaction between MEL and dichlorodihydrofluorescein (DCFH2), perhaps the most widely fluorescence probe employed for free radicals detection in cellular models. Here, it is demonstrated that melatonin potentiates the photooxidation of DCFH2 in a cell-free system, increasing the production of its fluorescent metabolite. Indeed, MEL works as an antioxidant scavenging hydroxyl radicals in this system. Thus, this reaction between MEL and DCFH2 produces N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK), a biogenic amine with antioxidant properties too. This reaction is O2 and light dependent and it is prevented by antioxidants such as N-acetylcysteine or ascorbic acid. Furthermore, when DCFH2 has been employed to evaluate antioxidant or prooxidant activities of MEL in cellular models it is confirmed that it works as an antioxidant but these results can be modulated by light misleading to a prooxidant conclusion. In conclusion, here is demonstrated that DCFH2, light and melatonin interact and results obtained using these fluorescence probes in studies with melatonin have to be carefully interpreted

    GLUT1 protects prostate cancer cells from glucose deprivation-induced oxidative stress

    Get PDF
    Glucose, chief metabolic support for cancer cell survival and growth, is mainly imported into cells by facilitated glucose transporters (GLUTs). The increase in glucose uptake along with tumor progression is due to an increment of facilitative glucose transporters as GLUT1. GLUT1 prevents cell death of cancer cells caused by growth factors deprivation, but there is scarce information about its role on the damage caused by glucose deprivation, which usually occurs within the core of a growing tumor. In prostate cancer (PCa), GLUT1 is found in the most aggressive tumors, and it is regulated by androgens. To study the response of androgen-sensitive and insensitive PCa cells to glucose deprivation and the role of GLUT1 on survival mechanisms, androgen-sensitive LNCaP and castration-resistant LNCaP-R cells were employed. Results demonstrated that glucose deprivation induced a necrotic type of cell death which is prevented by antioxidants. Androgen-sensitive cells show a higher resistance to cell death triggered by glucose deprivation than castration-resistant cells. Glucose removal causes an increment of H2O2, an activation of androgen receptor (AR) and a stimulation of AMP-activated protein kinase activity. In addition, glucose removal increases GLUT1 production in androgen sensitive PCa cells. GLUT1 ectopic overexpression makes PCa cells more resistant to glucose deprivation and oxidative stress-induced cell death. Under glucose deprivation, GLUT1 overexpressing PCa cells sustains mitochondrial SOD2 activity, compromised after glucose removal, and significantly increases reduced glutathione (GSH). In conclusion, androgen-sensitive PCa cells are more resistant to glucose deprivation-induced cell death by a GLUT1 upregulation through an enhancement of reduced glutathione levels. Keywords: Glut1, Prostate cancer, Glucose deprivation, Androgen receptor, Glutathione, Oxidative stres

    Melatonin uptake by cells: An answer to its relationship with glucose?

    Get PDF
    Melatonin, N-acetyl-5-methoxytryptamine, is an indole mainly synthesized from tryptophan in the pineal gland and secreted exclusively during the night in all the animals reported to date. While the pineal gland is the major source responsible for this night rise, it is not at all the exclusive production site and many other tissues and organs produce melatonin as well. Likewise, melatonin is not restricted to vertebrates, as its presence has been reported in almost all the phyla from protozoa to mammals. Melatonin displays a large set of functions including adaptation to light: dark cycles, free radical scavenging ability, antioxidant enzyme modulation, immunomodulatory actions or differentiation–proliferation regulatory effects, among others. However, in addition to those important functions, this evolutionary ‘ancient’ molecule still hides further tools with important cellular implications. The major goal of the present review is to discuss the data and experiments that have addressed the relationship between the indole and glucose. Classically, the pineal gland and a pinealectomy were associated with glucose homeostasis even before melatonin was chemically isolated. Numerous reports have provided the molecular components underlying the regulatory actions of melatonin on insulin secretion in pancreatic beta-cells, mainly involving membrane receptors MTNR1A/B, which would be partially responsible for the circadian rhythmicity of insulin in the organism. More recently, a new line of evidence has shown that glucose transporters GLUT/SLC2A are linked to melatonin uptake and its cellular internalization. Beside its binding to membrane receptors, melatonin transportation into the cytoplasm, required for its free radical scavenging abilities, still generates a great deal of debate. Thus, GLUT transporters might constitute at least one of the keys to explain the relationship between glucose and melatonin. These and other potential mechanisms responsible for such interaction are also discussed here

    Melatonin decreases glucose metabolism in prostate cancer cells: A 13C stable isotope-resolved metabolomic study

    Get PDF
    The pineal neuroindole melatonin exerts an exceptional variety of systemic functions. Some of them are exerted through its specific membrane receptors type 1 and type 2 (MT1 and MT2) while others are mediated by receptor-independent mechanisms. A potential transport of melatonin through facilitative glucose transporters (GLUT/SLC2A) was proposed in prostate cancer cells. The prostate cells have a particular metabolism that changes during tumor progression. During the first steps of carcinogenesis, oxidative phosphorylation is reactivated while the switch to the “Warburg effect” only occurs in advanced tumors and in the metastatic stage. Here, we investigated whether melatonin might change prostate cancer cell metabolism. To do so, 13C stable isotope-resolved metabolomics in androgen sensitive LNCaP and insensitive PC-3 prostate cancer cells were employed. In addition to metabolite 13C-labeling, ATP/AMP levels, and lactate dehydrogenase or pentose phosphate pathway activity were measured. Melatonin reduces lactate labeling in androgen-sensitive cells and it also lowers 13C-labeling of tricarboxylic acid cycle metabolites and ATP production. In addition, melatonin reduces lactate 13C-labeling in androgen insensitive prostate cancer cells. Results demonstrated that melatonin limits glycolysis as well as the tricarboxylic acid cycle and pentose phosphate pathway in prostate cancer cells, suggesting that the reduction of glucose uptake is a major target of the indole in this tumor type
    corecore