1,594 research outputs found

    Amorphous ferromagnetism and re-entrant magnetic glassiness in Sm2_{2}Mo2_{2}O7_{7}: new insights into the electronic phase diagram of pyrochlore molybdates

    Full text link
    We discuss the magnetic properties of a Sm2_{2}Mo2_{2}O7_{7} single crystal as investigated by means of different experimental techniques. In the literature, a conventional itinerant ferromagnetic state is reported for the Mo4+^{4+} sublattice below ∼78\sim 78 K. However, our results of dc magnetometry, muon spin spectroscopy (μ+\mu^{+}SR) and high-harmonics magnetic ac susceptibility unambiguously evidence highly disordered conditions in this phase, in spite of the crystalline and chemical order. This disordered magnetic state shares several common features with amorphous ferromagnetic alloys. This scenario for Sm2_{2}Mo2_{2}O7_{7} is supported by the anomalously high values of the critical exponents, as mainly deduced by a scaling analysis of our dc magnetization data and confirmed by the other techniques. Moreover, μ+\mu^{+}SR detects a significant static magnetic disorder at the microscopic scale. At the same time, the critical divergence of the third-harmonic component of the ac magnetic susceptibility around ∼78\sim 78 K leads to additional evidence towards the glassy nature of this magnetic phase. Finally, the longitudinal relaxation of μ+\mu^{+} spin polarization (also supported by results of ac susceptibility) evidences re-entrant glassy features similar to amorphous ferromagnets.Comment: 15 pages, 13 figure

    Ballistic heat transport of quantum spin excitations as seen in SrCuO2

    Full text link
    Fundamental conservation laws predict ballistic, i.e., dissipationless transport behaviour in one-dimensional quantum magnets. Experimental evidence, however, for such anomalous transport has been lacking ever since. Here we provide experimental evidence for ballistic heat transport in a S=1/2 Heisenberg chain. In particular, we investigate high purity samples of the chain cuprate SrCuO2 and observe a huge magnetic heat conductivity κmag\kappa_{mag}. An extremely large spinon mean free path of more than a micrometer demonstrates that κmag\kappa_{mag} is only limited by extrinsic scattering processes which is a clear signature of ballistic transport in the underlying spin model

    Study of phonon transport across several Si/Ge interfaces using full-band phonon Monte Carlo simulation

    Full text link
    A Full Band Monte Carlo simulator has been developed to consider phonon transmission across interfaces that are perpendicular to the heat flux. This solver of the Boltzmann transport equation which does not require any assumption on the shape the phonon distribution can naturally consider all phonon transport regimes from the diffusive to the fully ballistic regime. Hence, this simulator is used to study single and double Si/Ge heterostructures from the micrometer scale down to the nanometer scale i.e. in all phonon transport regime from ballistic to fully diffusive. A methodology to estimate the thermal conductivities and the thermal interfaces is presented

    Spin Gap in the Single Spin-1/2 Chain Cuprate Sr1.9_{1.9}Ca0.1_{0.1}CuO3_3

    Full text link
    We report 63^{63}Cu nuclear magnetic resonance and muon spin rotation measurements on the S=1/2 antiferromagnetic Heisenberg spin chain compound Sr1.9_{1.9}Ca0.1_{0.1}CuO3_3. An exponentially decreasing spin-lattice relaxation rate 1/T1_1 indicates the opening of a spin gap. This behavior is very similar to what has been observed for the cognate zigzag spin chain compound Sr0.9_{0.9}Ca0.1_{0.1}CuO2_2, and confirms that the occurrence of a spin gap upon Ca doping is independent of the interchain exchange coupling J′J'. Our results therefore generally prove the appearance of a spin gap in an antiferromagnetic Heisenberg spin chain induced by a local bond disorder of the intrachain exchange coupling JJ. A low temperature upturn of 1/T1_1 evidences growing magnetic correlations. However, zero field muon spin rotation measurements down to 1.5 K confirm the absence of magnetic order in this compound which is most likely suppressed by the opening of the spin gap.Comment: 5 pages, 4 figure

    Coarctation of the aorta: pre and postoperative evaluation with MRI and MR angiography; correlation with echocardiography and surgery

    Get PDF
    Aims: To compare MRI and MRA with Doppler-echocardiography (DE) in native and postoperative aortic coarctation, define the best MR protocol for its evaluation, compare MR with surgical findings in native coarctation. Materials and methods: 136 MR studies were performed in 121 patients divided in two groups: Group I, 55 preoperative; group II, 81 postoperative. In group I, all had DE and surgery was performed in 35 cases. In group II, DE was available for comparison in 71 cases. MR study comprised: spin-echo, cine, velocity-encoded cine (VEC) sequences and 3D contrast-enhanced MRA. Results: In group I, diagnosis of coarctation was made by DE in 33 cases and suspicion of coarctation and/or aortic arch hypoplasia in 18 cases. Aortic arch was not well demonstrated in 3 cases and DE missed one case. There was a close correlation between VEC MRI and Doppler gradient estimates across the coarctation, between MRI aortic arch diameters and surgery but a poor correlation in isthmic measurements. In group II, DE detected a normal isthmic region in 31 out of 35 cases. Postoperative anomalies (recoarctation, aortic arch hypoplasia, kinking, pseudoaneurysm) were not demonstrated with DE in 50% of cases. Conclusions: MRI is superior to DE for pre and post-treatment evaluation of aortic coarctation. An optimal MR protocol is proposed. Internal measurement of the narrowing does not correspond to the external aspect of the surgical narrowin

    The thermal conductivity of alternating spin chains

    Full text link
    We study a class of integrable alternating (S1,S2) quantum spin chains with critical ground state properties. Our main result is the description of the thermal Drude weight of the one-dimensional alternating spin chain as a function of temperature. We have identified the thermal current of the model with alternating spins as one of the conserved currents underlying the integrability. This allows for the derivation of a finite set of non-linear integral equations for the thermal conductivity. Numerical solutions to the integral equations are presented for specific cases of the spins S1 and S2. In the low-temperature limit a universal picture evolves where the thermal Drude weight is proportional to temperature T and central charge c.Comment: 15 pages, 1 figur

    The potential role of T-cells and their interaction with antigen-presenting cells in mediating immunosuppression following trauma-hemorrhage

    Get PDF
    Objective: Trauma-hemorrhage results in depressed immune responses of antigen-presenting cells (APCs) and T-cells. Recent studies suggest a key role of depressed T-cell derived interferon (IFN)-g in this complex immune cell interaction. The aim of this study was to elucidate further the underlying mechanisms responsible for dysfunctional T-cells and their interaction with APCs following trauma-hemorrhage. Design: Adult C3H/HeN male mice were subjected to trauma-hemorrhage (3-cm midline laparotomy) followed by hemorrhage (blood pressure of 35�5mmHg for 90 min and resuscitation) or sham operation. At 24 h thereafter, spleens were harvested and T-cells (by Microbeads) and APCs (via adherence) were Isolated. Co-cultures of T-cells and APCs were established for 48 h and stimulated with concanavalin A and lipopolysaccharide. T-Cell specific cytokines known to affect APC function (i.e. interleukin(IL)-2, IL-4 and granulocyte-macrophage colony-stimulating factor (GM-CSF)) were measured in culture supernatants by Multiplex assay. The expression of MHC class II as well as co-stimulatory surface molecules on T-cells and APCs was determined by flow cytometry. Results: The release of IL-4 and GM-CSF by T-cells was suppressed following trauma-hemorrhage, irrespective of whether sham or trauma-hemorrhage APCs were present. Antigen-presenting cells from animals subjected to trauma-hemorrhage did not affect T-cell derived cytokine release by sham T-cells. In contrast, T-cells from traumahemorrhage animals depressed MHC class II expression of CD11c(þ) cells, irrespective of whether APCs underwent sham or trauma-hemorrhage procedure. Surprisingly, co-stimulatory molecules on APCs (CD80, CD86) were not affected by trauma-hemorrhage. Conclusions: These results suggest that beside IFN-g other T-cell derived cytokines contribute to immunosuppression following trauma-hemorrhage causing diminished MHC II expression on APCs. Thus, T-cells appear to play an important role in this interaction at the time-point examined. Therapeutic approaches should aim at maintenance of T-cell function and their interaction with APCs to prevent extended immunosuppression following trauma-hemorrhage
    • …
    corecore