9,898 research outputs found

    Determination of the interactions in confined macroscopic Wigner islands: theory and experiments

    Full text link
    Macroscopic Wigner islands present an interesting complementary approach to explore the properties of two-dimensional confined particles systems. In this work, we characterize theoretically and experimentally the interaction between their basic components, viz., conducting spheres lying on the bottom electrode of a plane condenser. We show that the interaction energy can be approximately described by a decaying exponential as well as by a modified Bessel function of the second kind. In particular, this implies that the interactions in this system, whose characteristics are easily controllable, are the same as those between vortices in type-II superconductors.Comment: 8 pages, 8 figure

    Single File Diffusion enhancement in a fluctuating modulated 1D channel

    Full text link
    We show that the diffusion of a single file of particles moving in a fluctuating modulated 1D channel is enhanced with respect to the one in a bald pipe. This effect, induced by the fluctuations of the modulation, is favored by the incommensurability between the channel potential modulation and the moving file periodicity. This phenomenon could be of importance in order to optimize the critical current in superconductors, in particular in the case where mobile vortices move in 1D channels designed by adapted patterns of pinning sites.Comment: 4 pages, 4 figure

    Spectral Features of the Proximity Effect

    Full text link
    We calculate the local density of states (LDOS) of a superconductor-normal metal sandwich at arbitrary impurity concentration. The presence of the superconductor induces a gap in the normal metal spectrum that is proportional to the inverse of the elastic mean free path ll for rather clean systems. For a mean free path much shorter than the thickness of the normal metal, we find a gap size proportional to ll that approaches the behavior predicted by the Usadel equation (diffusive limit).Comment: LT22 proceeding

    FTIR difference and resonance raman spectroscopy of rhodopsins with applications to optogenetics

    Full text link
    Thesis (Ph. D.)--Boston UniversityThe major aim of this thesis is to investigate the molecular basis for the function of several types of rhodopsins with special emphasis on their application to the new field of optogenetics. Rhodopsins are transmembrane biophotonic proteins with 7 a-helices and a retinal chromophore. Studies included Archaerhodopsin 3 (AR3), a light driven proton pump similar to the extensively studied bacteriorhodopsin (BR); channelrhodopsins 1 and 2, light-activated ion channels; sensory rhodopsin II (SRII), a light-sensing protein that modulates phototaxis used in archaebacteria; and squid rhodopsins (sRho), the major photopigment in squid vision and a model for human melanopsin, which controls circadian rythms. The primary techniques used in these studies were FTIR difference spectroscopy and resonance Raman spectroscopy. These techniques, in combination with site directed mutagenesis and other biochemical methodologies produced new knowledge regarding the structural changes of the retinal chromophore, the location and function of internal water molecules as well as specific amino acids and peptide backbone. Specialized techniques were developed that allowed rhodopsins to be studied in intact membrane environments and in some cases in vivo measurements were made on rhodopsin heterologously expressed in E. coli thus allowing the effects of interacting proteins and membrane potential to be investigated. Evidence was found that the local environment of one or more internal water molecules in SRII is altered by interaction with its cognate transducer, Htrii, and is also affected by the local lipid environment. In the case of AR3, many of the broad IR continuum absorption changes below 3000 cm-1, assigned to networks of water molecules involved in proton transport through cytoplasmic and extracellular portions in BR, were found to be very similar to BR. Bands assigned to water molecules near the Schiff base postulated to be involved in proton transport were, however, shifted or absent. Structural changes of internal water molecules and possible bands associated with the interaction with ,8-arrestins were also detected in photoactivated squid rhodopsin when transformed to the acid Meta intermediate. Near-IR confocal resonance Raman measurements were performed both on AR3 reconstituted into E. coli polar lipids and in vivo in E. coli expressing AR3 in the absence and presence of a negative transmembrane potential. On the basis of these measurements, a model is proposed which provides a possible explanation for the observed fluorescence dependence of AR3 and other microbial rhodopsins on transmembrane potential

    Accurate mass measurements of 26^{26}Ne, 26−30^{26-30}Na, 29−33^{29-33}Mg performed with the {\sc Mistral} spectrometer

    Full text link
    The minuteness of the nuclear binding energy requires that mass measurements be highly precise and accurate. Here we report on new measurements 29−33^{29-33}Mg and 26^{26}Na performed with the {\sc Mistral} mass spectrometer at {\sc Cern}'s {\sc Isolde} facility. Since mass measurements are prone to systematic errors, considerable effort has been devoted to their evaluation and elimination in order to achieve accuracy and not only precision. We have therefore conducted a campaign of measurements for calibration and error evaluation. As a result, we now have a satisfactory description of the {\sc Mistral} calibration laws and error budget. We have applied our new understanding to previous measurements of 26^{26}Ne, 26−30^{26-30}Na and 29,32^{29,32}Mg for which re-evaluated values are reported.Comment: submitted to Nuclear Physics

    Blow-up of the hyperbolic Burgers equation

    Full text link
    The memory effects on microscopic kinetic systems have been sometimes modelled by means of the introduction of second order time derivatives in the macroscopic hydrodynamic equations. One prototypical example is the hyperbolic modification of the Burgers equation, that has been introduced to clarify the interplay of hyperbolicity and nonlinear hydrodynamic evolution. Previous studies suggested the finite time blow-up of this equation, and here we present a rigorous proof of this fact
    • …
    corecore