33 research outputs found

    NEUROPROTECTIVE ROLE OF ASCORBIC ACID: ANTIOXIDANT AND NON-ANTIOXIDANT FUNCTIONS

    Get PDF
    Ascorbic acid (AA) or Vitamin C is an important antioxidant which participates in numerous cellular functions. Although in human plasma its concentration is in micromolars but it reaches millimolar concentrations in most of the human tissues. The high ascorbate cellular concentrations are generated and maintained by a specific sodium-dependent Vitamin C transporter type 2 (SVCT2, member of Slc23 family). Metabolic processes recycle Vitamin C from its oxidized forms (ascorbate) inside the cells. AA concentration is highest in the neurons of the central nervous system (CNS) of mammals, and deletion of its transporter affects mice brain and overall survival. In the CNS, intracellular ascorbate serves several functions including antioxidant protection, peptide amidation, myelin formation, synaptic potentiation, and protection against glutamate toxicity. SVCT2 maintains neuronal ascorbate content in CNS which has relevance for neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's disease. As ascorbate supplements decrease infarct size in ischemia-reperfusion injury and protect neurons from oxidative damage, it is a vital dietary antioxidant. The aim of this review is to assess the role of the SVCT2 in regulating neuronal ascorbate homeostasis in CNS and the extent to which ascorbate affects brain function as an antioxidant

    NATURAL ANTIOXIDANTS AS DEFENSE SYSTEM AGAINST CANCER

    Get PDF
    In living cells, the production of free radicals that comprise both reactive oxygen species (ROS) and reactive nitrogen species is highly regulated that help the cells to sustain redox homeostasis. Overproduction of ROS from mitochondrial electron transport chain leakage or excessive stimulation of xanthine oxidase and other oxidative enzymes leads to the uncontrolled production of free radicals leading to oxidative stress that can mediate damage to cell structures. This damage can be repaired by the antioxidant defense system. Antioxidants are capable of stabilizing, or deactivating, free radicals before they attack cellular components such as DNA, proteins, and lipids. The use of antioxidants in cancer prevention is a rapidly evolving research area where antioxidants scavenge free radicals and thus, indirectly help in the prevention of cancer. A wide range of antioxidants such as glutathione, N-acetylcysteine, coenzyme Q10, lycopene, flavonoids, and isoflavones when used in combination with chemotherapy and radiotherapy, result in the reduction of drug toxicity and enhanced efficacy of anticancer agents. This review aims at the use of these exogenous antioxidants as disease-oriented therapy and elucidating the relation of antioxidant enzymes with different types of cancers to overcome the harmful effects of cancer treatment

    New insights into molecular links between microbiota and gastrointestinal cancers:A literature review

    Get PDF
    Despite decades of exhaustive research on cancer, questions about cancer initiation, development, recurrence, and metastasis have still not been completely answered. One of the reasons is the plethora of factors acting simultaneously in a tumour microenvironment, of which not all have garnered attention. One such factor that has long remained understudied and has only recently received due attention is the host microbiota. Our sheer-sized microbiota exists in a state of symbiosis with the body and exerts significant impact on our body’s physiology, ranging from immune-system development and regulation to neurological and cognitive development. The presence of our microbiota is integral to our development, but a change in its composition (microbiota dysbiosis) can often lead to adverse effects, increasing the propensity of serious diseases like cancers. In the present review, we discuss environmental and genetic factors that cause changes in microbiota composition, disposing of the host towards cancer, and the molecular mechanisms (such as β-catenin signalling) and biochemical pathways (like the generation of oncogenic metabolites like N-nitrosamines and hydrogen sulphide) that the microbiota uses to initiate or accelerate cancers, with emphasis on gastrointestinal cancers. Moreover, we discuss how microbiota can adversely influence the success of colorectal-cancer chemotherapy, and its role in tumour metastasis. We also attempted to resolve conflicting results obtained for the butyrate effect on tumour suppression in the colon, often referred to as the ‘butyrate paradox’. In addition, we suggest the development of microbiota-based biomarkers for early cancer diagnosis, and a few target molecules of which the inhibition can increase the overall chances of cancer cure

    Covalent–Organic Framework-Based Materials in Theranostic Applications: Insights into Their Advantages and Challenges

    Get PDF
    Nanomedicine has been essential in bioimaging and cancer therapy in recent years. Nanoscale covalent–organic frameworks (COFs) have been growing as an adequate classification of biomedical nanomaterials with practical application prospects because of their increased porosity, functionality, and biocompatibility. The high sponginess of COFs enables the incorporation of distinct imaging and therapeutic mechanisms with a better loading efficiency. Nevertheless, preliminary biocompatibility limits their possibility for clinical translation. Thus, cutting-edge nanomaterials with high biocompatibility and improved therapeutic efficiency are highly expected to fast-track the clinical translation of nanomedicines. The inherent effects of nanoscale COFs, such as proper size, modular pore geometry and porosity, and specific postsynthetic transformation through simple organic changes, make them particularly appealing for prospective nanomedicines. The organic building blocks of COFs may also be postmodified for particular binding to biomarkers. The exceptional features of COFs cause them to be an encouraging nanocarrier for bioimaging and therapeutic applications. In this review, we have systematically discussed the advances of COFs in the field of theranostics by providing essential features of COFs along with their synthetic methods. Further, the applications of COFs in the field of theranostics (such as drug delivery systems, photothermal, and photodynamic therapy) are discussed in detail with the help of available literature to date. Furthermore, the advantages of COFs over other materials for therapeutics and drug delivery are discussed. Finally, the review concludes with potential future COF applications in the theranostic field

    Recent Advancements in the Technologies Detecting Food Spoiling Agents

    Get PDF
    To match the current life-style, there is a huge demand and market for the processed food whose manufacturing requires multiple steps. The mounting demand increases the pressure on the producers and the regulatory bodies to provide sensitive, facile, and cost-effective methods to safeguard consumers’ health. In the multistep process of food processing, there are several chances that the food-spoiling microbes or contaminants could enter the supply chain. In this contest, there is a dire necessity to comprehend, implement, and monitor the levels of contaminants by utilizing various available methods, such as single-cell droplet microfluidic system, DNA biosensor, nanobiosensor, smartphone-based biosensor, aptasensor, and DNA microarray-based methods. The current review focuses on the advancements in these methods for the detection of food-borne contaminants and pathogens

    Role of Silver Nanoparticle-Doped 2-Aminodiphenylamine Polymeric Material in the Detection of Dopamine (DA) with Uric Acid Interference

    Get PDF
    A viable electrochemical approach for the detection of dopamine (DA) in uric acid (UA) utilizing a silver nanoparticle-doped 2-aminodiphenylamine (AgNPs-2ADPA) electrode was invented. The electrochemical performance of DA showed that the incorporated electrode displayed outstanding electrocatalytic performance to the electrochemical oxidation of DA. In our study, the AgNPs-2ADPA exhibits remarkable catalytic activity, retaining high current value and resilience when employed as a working electrode component for electrocatalytic detection of DA. We have also utilized the bare and polymeric-2ADPA in DA detection for a comparison study. This method offers a facile route with extraordinary sensitivity, selectivity, and strength for the voltammetric detection of DA, even in the presence of UA and ascorbic acid (AA) as interferents, that can be employed for pharmaceutical and biological specimens

    Biodegradable PEG-PCL Nanoparticles for Co-delivery of MUC1 Inhibitor and Doxorubicin for the Confinement of Triple-Negative Breast Cancer

    Get PDF
    Combating triple-negative breast cancer (TNBC) is still a problem, despite the development of numerous drug delivery approaches. Mucin1 (MUC1), a glycoprotein linked to chemo-resistance and progressive malignancy, is unregulated in TNBC. GO-201, a MUC1 peptide inhibitor that impairs MUC1 activity, promotes necrotic cell death by binding to the MUC1-C unit. The current study deals with the synthesis and development of a novel nano-formulation (DM-PEG-PCL NPs) comprising of polyethylene glycol-polycaprolactone (PEG-PCL) polymer loaded with MUC1 inhibitor and an effective anticancer drug, doxorubicin (DOX). The DOX and MUC1 loaded nanoparticles were fully characterized, and their different physicochemical properties, viz. size, shape, surface charge, entrapment efficiencies, release behavior, etc., were determined. With IC(50) values of 5.8 and 2.4 nm on breast cancer cell lines, accordingly, and a combination index (CI) of < 1.0, DM-PEG-PCL NPs displayed enhanced toxicity towards breast cancer cells (MCF-7 and MDA-MB-231) than DOX-PEG-PCL and MUC1i-PEG-PCL nanoparticles. Fluorescence microscopy analysis revealed DOX localization in the nucleus and MUC1 inhibitor in the mitochondria. Further, DM-PEG-PCL NPs treated breast cancer cells showed increased mitochondrial damage with enhancement in caspase-3 expression and reduction in Bcl-2 expression.In vivo evaluation using Ehrlich Ascites Carcinoma bearing mice explicitly stated that DM-PEG-PCL NPs therapy minimized tumor growth relative to control treatment. Further, acute toxicity studies did not reveal any adverse effects on organs and their functions, as no mortalities were observed. The current research reports for the first time the synergistic approach of combination entrapment of a clinical chemotherapeutic (DOX) and an anticancer peptide (MUC1 inhibitor) encased in a diblock PEG-PCL copolymer. Incorporating both DOX and MUC1 inhibitors in PEG-PCL NPs in the designed nanoformulation has provided chances and insights for treating triple-negative breast tumors. Our controlled delivery technology is biodegradable, non-toxic, and anti-multidrug-resistant. In addition, this tailored smart nanoformulation has been particularly effective in the therapy of triple-negative breast cancer. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10924-022-02654-4
    corecore