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Highlights 

 

 O- and N-linked glycosylation orchestrate proteoforms and their functions 

 Incomplete/neosynthesis of glycan protein lead to immune dysregulation 

and cancer 

 Signaling via PDGF, FGFR, EGFR, MET, RON, or IGFR receptors needs 

glycosylation 

 Multi-omics of tumors reveal heterogeneity in the glycosylation pattern  

 Tumor-specific glycans interact with CD43, CD45, selectins, galectins and 

siglecs  
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Abstract 

Glycosylation-mediated post-translational modification is critical for regulating many 

fundamental processes like cell division, differentiation, immune response, and cell-

to-cell interaction. Alterations in the N-linked or O-linked glycosylation pattern of 

regulatory proteins like transcription factors or cellular receptors lead to many 

diseases, including cancer. These alterations give rise to micro- and macro-

heterogeneity in tumor cells. Here, we review the role of O- and N-linked 

glycosylation and its regulatory function in autoimmunity and aberrant glycosylation 

in cancer. The change in cellular glycome could result from a change in the 

expression of glycosidases or glycosyltransferases like N-acetyl-glucosaminyl 

transferase V, FUT8, ST6Gal-I, DPAGT1, etc., impact the glycosylation of target 

proteins leading to transformation.  Moreover, the mutations in glycogenes affect 

glycosylation patterns on immune cells leading to other related manifestations like 

pro- or anti-inflammatory effects.  In recent years, understanding the glycome to 

cancer indicates that it can be utilized for both diagnosis/prognosis as well as 

immunotherapy. Studies involving mass spectrometry of proteome, site- and 

structure-specific glycoproteomics, or transcriptomics/genomics of patient samples 

and cancer models revealed the importance of glycosylation homeostasis in cancer 

biology. The development of emerging technologies, such as the lectin microarray, 

has facilitated research on the structure and function of glycans and glycosylation. 

Newly developed devices allow for high-throughput, high-speed, and precise research 

on aberrant glycosylation. This paper also discusses emerging technologies and 

clinical applications of glycosylation. 

Keywords: Metastasis; Glycosylation; Cancer; Multi-omics; glycans; immunotherapy 
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Graphical Abstract 
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1.  Introduction:  

 

The process of translation is not enough to form functional proteins. Many 

proteins require post-translational modifications, including proper protein folding or 

the addition of functional groups. Several of these modifications, with prominent 

phosphorylation, participate in signal transduction and gene regulation (Lv et al., 

2022). Glycosylation is a complicated process of protein or lipid modifications 

involving specific enzymes (glycosidases or glycosyltransferases), which helps in 

adding glycan moieties to provide particular functions to glycoproteins like cell-to-

cell interaction, cellular differentiation, agglutination reaction in blood, etc. Most of 

these modifications are densely located in the outer region of the cell surface, the 

glycocalyx (Alymova et al., 2022). The two main categories of protein glycosylation 

are O-linked and N-linked glycosylation (abbreviated herein as OLG and NLG, 

respectively), which are structurally and functionally different from each other 

(Hulsmeier et al., 2011). The N- and O-glycans are typically released from 

glycoproteins by either enzymes or chemical methods. 

 

 

Figure 1: Illustration of N-glycosylation expression and function. The process initiates 

in ER, and after elongation, it matures in the Golgi body. Next, sugar nucleotides 
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from the nucleus go to ER. The synthesized glycoproteins with specific functions like 

cell-cell adhesion and microbe/ligand-receptor interaction are then transported to the 

cell surface.  

 

The genes associated with the expression of these glycans are known as 

glycogenes (Angata et al., 2020). The expression profile of these genes correlates with 

the glycomic alterations occurring within a cell (Li et al., 2017; Lumibao et al., 2022; 

Shah et al., 2015; Zhou et al., 2017; Zhu et al., 2019). Various enzymatic techniques 

were reported for analyzing different glycans; for instance, N-glycan analysis is done 

by releasing glycan with PNGase F (peptide-N-glycosidase F), followed by mass 

spectrometric analysis. Similarly, the Pronase enzyme releases the O- glycan or mass 

spectrometry (Wang et al., 2022).  

In eukaryotes, the NLG process (addition of glycan to free nitrogen of asparagine 

residue) follows three stages. First is the synthesis of long chains of oligosaccharide 

subunits on lipid molecules, known as lipid-linked oligosaccharides. In the second 

stage, it is transported on the targe UDP18 GalNAc polypeptides linked to the protein 

and, finally, the maturation (Stanley, 2007). The process starts on the Endoplasmic 

Reticulum (ER) surface while the protein N-glycan chains' elongation and maturation 

occur in Golgi-body. For Asn-linked glycosylation (ALG), the oligosaccharide moiety 

is synthesized by a group of enzymes working in a cascade. N-glycosylation starts 

with adding two N-acetylglucosamine (GlcNAc) molecules to the dolichol 

pyrophosphate residue (PP-Dol) embedded into the cytosolic side of the ER, as 

illustrated in figure 1. In the first reaction, the GlcNAc molecule, which is attached to 

Uridine diphosphate (UDP), is transferred to PP-Dol by the enzyme DPAGT1 (in 

mammals) or GlcNAc-1-phosphotransferase ALG7 (Bretthauer, 2009). After this, a 

complex of ALG13/ALG14 adds another GlcNAc yielding GlcNAc2-PP-Dol (Gao et 

al., 2005; Bickel et al., 2005), in which two molecules of GlcNAc are linked together 

by β (1,4) corresponding to its chitobiose core unit. Then, many enzymes add five 

mannose (Man) molecules to the chitobiose structure to form an intermediate complex, 

Man5-GlcNAc2-PP-Dol. Finally, this structure is transferred to ER surface by a flip-

flop mechanism using flippases enzymes (Frank et al., 2008).  

 

Further synthesis occurs in the luminal compartment of ER with the ligation of four 

residues of mannose leading to the formation of Man9-GlcNAc2-PP-Dol, in which 

three glucosyltransferases come into action viz ALG3, ALG12, and ALG9. These 

enzymes transfer three glucose molecules (Glc), yielding Glc3Man9GlcNAc2-PP-Dol 

(Bloch et al., 2020; Burda and Aebi, 1998; Farid et al., 2011). This oligosaccharide 

moiety is transferred to the Asn residue of a specific protein with a conserved Asn-X-

Ser/Thr/Cys motif  (Matsui et al., 2011; Schwarz and Aebi, 2011). Interestingly, this 

process of transferring could occur co-translationally or post-translationally in 

eukaryotes.  Mature N-glycoproteins are expressed on the cell surface, as shown in 

figure 2. 
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 Figure 2: The structure of N-glycoproteins on the cell surface.  

 

The OLG process includes oxygen-carbon bonding between the hydroxyl group 

of Ser/Thr residues of folded protein (figure 3) (Bennett et al., 2012). In most 

eukaryotes, the sequences of different O-glycans are conserved and it mainly occurs 

on mucins, the large glycoproteins, comprising of a cytoplasmic tail, a transmembrane 

domain, and outside extracellular region harboring a Pro-Ser-Thr rich peptide repeat. 

Mucin has one monosaccharide molecule, mostly β-GalNAc, but could have α-Man, 

α-GalNAc, or other sugar (Bennett et al., 2012; Schoberer and Strasser, 2018). 

Different UDP-GalNAc polypeptides linked with 1N-acetylgalactosaminyl 

transferases are responsible for the attachment of GalNAc (Hagen et al., 2003). The 

attachment of various sugar moieties (galactose, GlcNAc, fucose, and sialic acid) 

further modifies the GalNAc, which leads to the formation of varying mucin O-

glycans that play an essential function in many biochemical processes (Ludovic et al., 

2015; Schjoldager and Clausen, 2012). In yeasts, O-glycans comprise many units of 
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Man molecules attached to Ser/Thr residues (Barolo et al., 2020; Schoberer and 

Strasser, 2018). Depending upon the added moiety, O-glycosylation could occur 

either on the surface of ER (manno- or fucosylation) (Harris and Spellman, 1993; 

Lommel and Strahl, 2009) or in the Golgi body (mucin-type or the synthesis of 

glycosaminoglycan) (Bishop et al., 2007; Tian and Ten Hagen, 2009).  

 

Figure 3: Structure of O- linked glycosylation core on the cell surface.  

 

Looking at the conservation of various enzymes involved in glycosylation, it 

seems they have evolved to perform specific and vital functions. In the current review, 

we will focus on variations in different glycosylated proteins. The aberrant 

glycosylation occurs because of cellular and metabolic variations leading to variant 

expressions of integrated glycans (Lv et al., 2022). Multi-omics studies of various 

tumors revealed tumor-associated variations in macromolecule structures, including 

an increase in the branching pattern of N-glycans, upregulation of specific antigens 

like sialyl lewis, and change in the expression of O-glycan expression or fucosylation. 

In addition to this, glycans are also involved in protein lysis, which directly links with 

cancer signal transduction, ligand interactions with the receptor, and inter and intra-

cellular communication in tumor cells. Below, we will give a detailed overview of 
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how alteration in glycosylation promotes different cancers, including cell-cell 

interaction in the tumor, tumorigenic signaling cascades, cell-matrix interaction, and 

metastasis.  

 

2. Biological significance of glycosylation 

 

Glycans are found to be associated with many fundamental processes like cellular 

metabolism (Bassaganas et al., 2014; Dennis et al., 2009), immune surveillance, 

inflammation, or cell–cell adhesion (Pinho et al., 2013; Zhao et al., 2008), cell–matrix 

interaction (Zhao et al., 2008) and inter- and intracellular signaling (Gomes et al., 

2013; Takeuchi and Haltiwanger, 2014). Therefore, alterations in glycan levels, as 

well as changes in their pattern, could transform the cell's behavior leading to cancer. 

The change in the glycan pattern on various proteoforms alters their conformation and 

structure, leading to a change in their activity (Bassaganas et al., 2014). Alterations in 

glycosylation linked to transformation were first described six decades ago (Lv et al., 

2022). Cancer cells exhibit an extensive range of glycosylation variations compared to 

normal cells. Upregulation or downregulation in protein glycosylation increases both 

molecular and functional heterogeneity within cell populations.  

 

First, we would discuss the role of glycosylation homeostasis in cellular signaling 

and proliferation pathways. The OLG of various transcription factors like cMyc, 

cyclin D1 or FoxM1 (forehead protein M1) is linked to cell cycle progression 

(Caldwell et al., 2010; Itkonen et al., 2013). OLG of cMyc (Master regulation of cell 

entry and proliferative metabolism) at Thr-58 competes with phosphorylation at this 

residue (a hot spot in human cancers) which stabilizes cMyc protein leading to 

oncogenesis (Itkonen et al., 2013). Figure 4 shows that an increase in OLG of cMyc 

increases its stability (Jozwiak et al., 2014). As mentioned above, the degree of 

branching in N-glycan can affect the activity and signaling of growth factor receptors 

leading to alteration in the signaling pathway for cellular proliferation (Boscher et al., 

2011; Jain et al., 2023; Stanley, 2007). Previously, it was shown that the change in the 

branching of glycans leads to a disturbance in the signaling molecules involved in cell 

survival during oncogenesis. 
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Figure 4: Impacts of increase in OLG of cMyc in cells. Higher levels of Transferase 

(OGT) produce OLG of c-Myc at Thr-58 residue which increases its stability. When 

OGT levels are low, the interplay of Ser-62/Thr-58 phosphorylation changes the fate 

of c-Myc to either degradation (Thr-58-P) or transcriptional activation (Ser-62-P). 

 

Many cellular receptors linked to proliferation and survival are governed through 

glycosylation, for example, PDGF, FGFR, EGFR, MET, or IGFR (Julien et al., 2013; 

Todeschini et al., 2007). The extracellular matrix (ECM) activates the signaling 

events of different growth factor receptors, comprising a variable glycoprotein, 

glycosaminoglycans, collagens, or proteoglycans. Glycosylated proteins have been 

important in facilitating integrin-dependent signaling by promoting cell growth and 

survival. The glycosylation ceramide on the cell surface can activate the c-Src 

signaling pathway. It can increase the expression of factors important for the survival 

of cancer stem cells through β-catenin. On the other hand, proteoglycans play a role in 

the formation and recognition of exosomes (Iozzo and Schaefer, 2015). 

 

Earlier, two major mechanisms underlying the alterations in tumor-associated 

carbohydrate structure have been proposed, incomplete synthesis and neosynthesis 

processes (Kannagi et al., 2008). The incomplete synthesis, which occurs more 

frequently in the early stages of the tumor involves disruption in the process of 

glycans synthesis as seen in epidermal cells. The incomplete synthesis observed in 

gastrointestinal and breast cancers is linked to sialyl Tn (STn) expression (Marcos et 

al., 2011). The mucin-type STn antigens, also called CD175s, were observed in 
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abundance in most colorectal, gastric, breast, ovarian and pancreatic cancers. STn 

expression on cells is an important indicator in the poor prognosis of patients with 

precursor and early lesions of carcinomas (Marcos et al., 2011).  

 

Neosynthesis, on the other hand, is a cancer-associated increase in the expression 

of various genes for saccharide determinants like sialyl Lewis an (SLea) and Sialyl 

Lewis X (SLeX) antigens, which mediate the adhesion between cancer cells and 

endothelium through selectin ligands. Slex- or SLea-carrying glycopeptides interact 

with selectins present in leukocytes, endothelial cells or platelets (Kudelka et al., 

2015). Metastasis is facilitated via higher expression of  SLex or SLea antigens by 

tumor cells, possibly through increased platelets and endothelial interaction. Jeschke 

et al. showed that the lower expression of these Sialyl Lewis antigens was found to be 

linked with the higher expression of E-cadherin and maintained the expression of 

Cathepsin-D in carcinoma in situ (without metastases) (Jeschke et al., 2005). On the 

other hand, an increase in the expression of both Sialyl Lewis antigens resulted in 

poor expression of E-cadherin, as observed in primary carcinoma. These antigen 

molecules are not expressed in a healthy organism but are reported in endometrial 

cancer (Kolben et al., 2022), colorectal cancer (Madunic et al., 2022), and renal 

carcinoma (Borzym-Kluczyk et al., 2015). Overexpression of both antigens is 

combined with poor prognosis and malignancy in cells (Kannagi et al., 2008b). 

Additionally, SLex expression was seen in almost every PDAC tissue with a loss of 

E-cadherin expression at the cell contacts, which is otherwise seen in normal cells  

(Bassaganas et al., 2014). Recently, the modifications in SLex or SLea by conjugating 

a lactose unit showed a robust increase in immune responses (Guo et al., 2020).  

 

It is well understood that the cells of the immune system, like immune effector 

cells protect against carcinogenesis by inhibiting the transformed cancer cells. Recent 

approaches suggested that the tumor-specific glycans interact with lectins present in 

immune cells for modulating the microenvironment of tumors (Rabinovich et al., 

2012) and could provide resistance to tumor suppression responses (Perdicchio et al., 

2016; Pinho and Reis, 2015). This process involves various lectins like CD43, CD45, 

selectins, galectins, and siglecs, leading to B and T cell differentiation via interaction 

and the recognition of various glycosylated tumor antigens (MacAuley et al., 2014; 

Rabinovich and Toscano, 2009). Galectins modulate immune and inflammatory 

responses leading to tumor cells escaping immune surveillance (Liu and Rabinovich, 

2005; Rabinovich and Toscano, 2009). Another mechanism to avoid immune 

surveillance by tumor cells is the immunosuppressive signaling pathway involving 

PD-L1 (programmed death ligand 1)/PD-1 (PD receptor 1), which inhibits the anti-

tumor activity of T-cells. Besides other post-transitional modifications like acetylation, 

sumoylation and phosphorylation, PD-L1 or PD-1 harbor glycosylation (Li et al., 

2016; Zhou et al., 2022). It was shown that the glycosylation of Asn residues at 192, 

200 and 219 positions of PD-L1 protein was important in antagonizing its 

proteasomal degradation (Li et al., 2016). In the case of head and neck squamous cell 

cancer, the glycosylation of PD-L2, a ligand of PD-1, lead to its binding to EGFR and 
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PD-1, resulting in immune evasion (Xu et al., 2021). Glycosylation-targeted immune 

therapy is a very promising area in cancer biology. 

 

3. Altered protein glycosylation in Cancer:  

 

3.1 Role in cellular adhesion:  

Glycans are well studied for their involvement in cell-cell adhesion (Pinho et al., 

2013; Zhao et al., 2008), cell-matrix interaction (Zhao et al., 2008) and inter- and 

intracellular signaling (Gomes et al., 2013; Takeuchi and Haltiwanger, 2014). Tight 

junctions allow intercellular communication across the barriers, while adhesion 

junctions act as cell-cell and cell-matrix regulatory molecules between adjacent cells. 

For example, adherens junctions via cadherin-catenin complex between corresponding 

cells. In addition, calcium-dependent transmembrane protein E-cadherin interacts with 

actin filaments and regulates various processes like adhesion between cells, cell 

differentiation, and cell motility (Thomas et al., 2021). The disruption in the cadherin-

catenin complex affects cell interaction and the integrity of tumor cells. In addition, 

pieces of evidence suggest that glycosylation influences both cadherin stability and 

cadherin-mediated interactions. One of the critical enzymes, N-acetyl-glucosaminyl 

transferase V (known as GnT-V), alters the glycosylation pattern of N-cadherin. 

 

Overexpression of GnT-V has been shown to alter the branching of 1,6-GlcNAc 

on N-cadherin, resulting in decreased cell-cell adherence and leading to tumor 

invasion as observed with human fibrosarcoma cells (Guo et al., 2003). Interstingly, 

using metastasis models of lung orthotopic and tail vein, it was revealed that GnT-V 

overexpression is linked to epithelial to mesenchymal transition and metastasis (Khan 

et al., 2018; Pucci et al., 2021). The knockout of GnT-V
-/-

 enhanced the N-cadherin 

mediated cell-cell adhesion in mouse embryonic fibroblasts (Guo et al., 2003). 

Adding to this, the reduced N-glycosylation of E-cadherin leads to the increased 

stability of adherent junctions in normal and cancer cells. Mechanistically, it could be 

linked to the interaction between the protein phosphatase 2A (PP2A) to hypo-

glycosylated E-cadherin that enhances tight junction assembly in cancer cells 

(Thomas et al., 2021). On to this, it was shown that in oral cancer, hyper-glycosylated 

E-cadherin destabilizes adherens junction proteins (Nita-Lazar et al., 2009).  

In various cancers, catenin is a crucial component in Wnt signaling, which is also 

involved in intercellular junction stability along with E-cadherin. It was observed that 

enhanced OLG increased catenin and E-cadherin expression leading to fibroblast cell 

motility.  Moreover, higher OLG enhanced tumor metastasis and mortality rate in the 

murine orthotropic colorectal cancer model (Reddy et al., 2018). Asn-554 residue 

plays a vital role in the function of E-cadherin as alteration of N-glycan 1,6-GlcNAc 

at this residue inhibits the physiological functions of E-cadherin (Carvalho et al., 

2015). Interestingly, previous research found that inhibiting 1,6 fucosyltransferase 

recovers cell-cell adhesion and reduces lung cancer invasion via E-cadherin. Similarly, 

fucosyltransferase 8 (FUT8) knockdown in pancreatic acinar carcinoma inhibits 

calcium-dependent E-cadherin facilitated cell-cell bonding (Thomas et al., 2021). 
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FUT8 catalyzes the formation of -1,6 linkage and transfers  l-fucose from GDP—l-

fucose (GDP-Fuc) onto the innermost GlcNAc of an N-glycan (shown in figure 5). 

Furthermore, FUT8 deficient MCF-7 cells display reduced fucosylation of E-cadherin, 

leading to lowered cell migration and invasion. In FUT8 deficient MCF-7 cells, the 

integrin-mediated focal adhesion kinase (FAK) signaling was also suppressed with 

diminished catenin nucleocytoplasmic localization (Liu et al., 2019). 

 

 

 
Figure:5 Fucosylation. FUT8 catalyzes the reaction. To form a -1,6 linkage, FUT8 

transfers l-fucose reside from GDP—l-fucose (GDP-Fuc) onto the innermost GlcNAc 

of an N-glycan.  

 

Tumor spheroid formation is caused by intercellular adhesion molecule 1 and 

activated leukocyte cell adhesion molecule as seen in cancer cases and is critically 

linked to clinical outcome and embolism (Clasen et al., 2022; Erturk et al., 2016; 

Ferragut et al., 2021; Wu et al., 2020). In ovarian cancer cells, it was shown that gene 

silencing of mannosidase (MAN1A1) of the Golgi apparatus blocked tumor formation 

via modifying N-glycans of ALCAM, resulting in decreased cell-cell interaction and 

motility (Hamester et al., 2019). Anoikis, a programmed cell death type, occurs in 

anchorage-dependent cells and is linked to loss of adhesion. The overexpression of 

GALNT3 (N-acetyl galactosaminyl transferase 3) increases OLG of mucin 1 (MUC1), 

a key player of anoikis, resulting in high stability of the E-cadherin and catenin 

complex and, as a result, induces cell propagation and motility in ovarian cancer cells. 

Furthermore, inhibiting GALNT3 destabilizes MUC1, which prevents cell 

proliferation and dissemination (Cheung et al., 2016). MUC16, a glycosylated 

transmembrane protein, promotes the interaction of epithelial cells with the 

extracellular matrix cytoskeleton (ECM). MUC16 genetic ablation disrupts actin 
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cytoskeleton binding, increasing proliferation and epithelial cell migration with 

altered zonula occludens-1 (tight junction protein-1) expression (Gipson et al., 2014; 

Thomas et al., 2021). 

 

3.2 Role in cell-matrix interaction:  

 

Proteins for anchoring and present in extracellular basement membrane also get 

affected by aberrant glycosylation, as seen in the case of laminin, integrins, collagen, 

and fibronectin that maintain cell-cell and cell-matrix interactions by interacting 

directly with ECM proteins. Changes in glycosylation patterns of the anchoring 

protein can cause a variety of pathological conditions, such as cardiovascular ailments 

(Menni et al., 2018), muscular dystrophy (Thomas et al., 2021), and cancer (Laubli 

and Borsig, 2019). Previously, knockout of GnT-III impeded β-1,6 branching of N-

glycans affecting integrins levels and blocking metastasis in mouse melanoma cells 

(Thomas et al., 2021).  

Furthermore, highly N-glycosylated α5β3 integrin and its substrate vitronectin 

change cancer cell adhesion properties that promote melanoma cell invasion (Pochec 

et al., 2016). Overexpression of β-galactoside α-2,6-sialyltransferase 1 (ST6Gal-I) 

increases β1 integrin and talin α-2,6 sialylations which elevate collagen IV 

expressions, thereby causing invasion and migration of colon cancer cells (Thomas et 

al., 2021). Similarly, in hepatocellular carcinoma, enhanced ST6Gal-I expression 

increases the sialylations of α5β1 integrin and epithelial cell adhesion to fibronectin 

(Yu et al., 2013). The overexpression of β-galactoside α-2,3-sialyltransferase 3 

(ST3Gal III) has been shown to modify sialylation on the α2β1 integrin, yielding 

reduced cellular adhesion and increased invasiveness in pancreatic cancer 

(Bassaganas et al., 2014). The α5β1 and α2β1 integrins also get modulated by 

glycosylation. It was shown that α-2,6 sialylation on these integrins reduced the 

binding of fibronectin and collagen IV, critical basement membrane proteins to breast 

cancer cells (MDA-MB-231) (Huang et al., 2022; Yuan et al., 2016). Moreover, 

modified MUC1 glycosylation changes α2β1 integrin the expression in pancreatic 

ductal adenocarcinoma, which in turn down-regulates phospho-FAK expression and 

its downstream signaling molecules, reducing tumor growth and metastasis 

(Radhakrishnan et al., 2013). The β4 integrin harboring β1,6-GlcNAc-branched N-

glycans was shown to enhance interaction with gelatin-3, which improved signaling 

via PI3K/Akt (phosphatidylinositol 3-kinase/protein kinase B) pathway and hence cell 

migration, invasion, and tumor growth. Strong evidence for this comes from the GnT-

III knock out, which inhibited N-glycan binding, which suppressed  β4  integrin and 

facilitated cancer cell invasion and migration (Kariya et al., 2018).  

 

3.3 Abberant glycosylation in signaling cascades  

 

The exact molecular mechanism by which abnormal and altered glycosylation 

roots unfavorable in metabolic and cellular signaling, helping towards tumor 

progression, is still a subject of investigation. Several cellular factors influence 
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tumorigenesis, like modified glycan expression, the glycosylating enzymes mutations, 

and their localization. All of these abnormalities activate oncogenic signaling 

cascades such as PI3K/Akt, Hippo signaling, Wnt/β-catenin, JAK/STAT, TGFβ/Smad, 

and Notch signaling (Munkley et al., 2016). 

 

Wnt signaling component's functional dysregulation and genetic mutations 

significantly impact cancer cells. One member, MUC13, a transmembrane 

glycoprotein regulating G1/S phase transition during cell cycle progression, 

phosphorylates β-catenin and destabilizes the β-catenin/ adenomatous polyposis coli 

/Dishvelled complex, and increases β-catenin nuclear translocation. In hepatocellular 

carcinoma, it was shown that the binding of β-catenin to an important transcription 

factor T-cell factor/ lymphoid enhancer factor increased Axin-2, c-Myc, and E-

cadherin expression, promoting tumor development (Dai et al., 2018). In gastric 

cancer cells, overexpression of O-glycosylated MUC5AC upregulate β-catenin and its 

downstream molecules increasing cell division, invasion, and metastasis. MUC5AC 

silencing, on the other hand, reduced cancer progression by downregulating β-catenin 

expression (Lahdaoui et al., 2017). Furthermore, knocking out MUC16 affects the E-

cadherin & β-catenin stability and increases phosphorylated Akt, ERK and EGFR 

expression in ovarian cancer cells, promoting tumor cell invasion and metastasis 

(Thomas et al., 2021). NLG of Wnt ligand, Wnt cellular receptors, and E-cadherin 

were shown to promote the expression and nuclear localization of β-catenin/γ-catenin, 

which increased the transcriptional activity of dolichyl-phosphate N-

acetylglucosamine phosphotransferase 1 (DPAGT1), leading to tumor invasion and 

metastasis. It was shown that reducing the expression of DPAGT1 decreased E-

cadherin glycosylation, suppressed Wnt signaling and determined tumor progression 

and metastasis (Sengupta et al., 2013).  

 

Receptor tyrosine kinases are important N-linked glycosylated proteins expressed 

by both immune cells as well as cancer cells which get activated by receptor 

modification and impact key features of metastasis like migration, invasion etc.  The 

genes encoding these kinases include HER2/ErbB2, EGFR, MST1R (encoding RON), 

MET etc. N-glycan modification on the ErbB receptor, the EGFR tyrosine kinase 

(Roskoski, 2014), has the potential to control the biological function and intracellular 

transport of these receptors, thus regulating the oncogenic signaling pathways and 

cancer. Bisection of GlcNAc has been shown to hinder EGFR and integrin signaling 

via the Mitogen-activated protein kinase (Thomas et al., 2021). The alteration in the 

N-glycan structure by inhibiting β1,4-N-acetylgalactosaminyltransferase III inhibited 

EGFR phosphorylation. Furthermore, the degradation of EGFR reduced the 

phosphorylation of AKT and ERK, suppressing colorectal cancer stem cells (Che et 

al., 2014). In another study, increased EGFR GalNAc-type-O-glycosylation by Core 

1  β-1,3-galactosyltransferase (C1GALT1) enhanced tumor development. Also, the 

specific inhibitor (Itraconazole) of C1GALT1 reduced the O-glycosylation of EGFR, 

resulting in decreased tumor progression (Lin et al., 2018). Altered EGFR 

glycosylation by Lewisy (Ley) carbohydrate increased EGFR phosphorylation, which 
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in turn increased phosphorylated AKT, resulting in enhanced oral cancer malignancy; 

however, lack of Ley glycosylation of EGFR significantly lowered cancer cell 

progression.  (Thomas et al., 2021). Interestingly, inhibiting the N-glycan biosynthesis 

in colorectal cells showed decreased in one of the critical components of tight 

junctions, claudin-3, possibly due to the inactivation of receptor tyrosine kinases 

(Perez et al., 2020).   

 

The gene MST1R (Macrophage stimulating receptor-1) encodes RON (Recepteur 

d’origine nantais) protein which, after glycosylation, goes through proteolytic 

processing (Hunt et al., 2023). RON and its ligand, macrophage-stimulating protein 

(Morrison et al., 2004), are involved in different types of cancers like ovarian cancer 

(Zhang et al., 2010), lung and renal cancer (Ronsin et al., 1993), and gastric cancer. 

Aberrant glycosylation of RON leads to cancer (Zhou et al., 2016). Recently, 

antibodies targeting glycosylated as well as non-glycosylated RON showed promising 

therapeutic efficacy and imaging (Koh et al., 2019; Yu Koh et al., 2022). Besides 

RON, a related protein MET (MNNG HOS transforming) present in epithelial cells is 

involved in multiple processes, including embryogenesis and its knockout cause 

tumor (Wang et al., 2015).  MET, a receptor for hepatocyte growth factor, is 

glycosylated at eleven sites which are important for its maturation and its interaction 

with ligands (Saitou et al., 2022).  A recent study (Saitou et al., 2022) showed that 

suppression of N-glycosylation in cancer cells using different N-glycan mutants lead 

to decreased processing of MET and its downstream signaling. Taken together, the 

alteration in the N-glycans of receptors tyrosine kinases can be utilized not only for 

prognosis but also for building therapies, including immunotherapy. 

 

The change in the expression of glycosyltransferases has been linked to tumor 

metastasis of oral squamous carcinoma, breast cancer, skin cancer, colon cancer, 

hepatocellular carcinoma., and pancreatic cancer. GnT-V mediated alteration in the 

glycan branches from  α1,6 mannose to β1-6-linked N-acetylglucosamine in many 

growth factors and cell surface receptors (like EGFR, MET, RON, Src, and TGF-β 

family oncogenes) enhances cancer metastasis (Nagae et al., 2018; Thomas et al., 

2021) (figure 6). These findings suggest that numerous gene and protein changes 

cause malignant transformation and neoplastic progression. According to 

accumulating pieces of evidence, the change in protein glycosylation machinery is 

associated with the attainment of cellular characteristics required for tumor cell 

invasion to distant regions. The remodeling of glycans that have been linked to tumor 

progression is primarily the result of mutations in the branching enzyme 

glycosyltransferases (Josic et al., 2019).  
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Figure 6: Function of aberrant glycosylated proteins in cancer metastasis. Changes in 

expressions of glycosyltransferases, fucosyltransferases, and sialyltransferases cause 

altered glycosylation of TGF-β and Wnt (transforming growth factor-β and 

wingless/integrated signaling pathway)  ligands that induce  EMT (Epithelial-to-

Mesenchymal Transition) in tumor cells. Increased mesenchymal marker expression 

facilitates tumor cells' metastasis to distant organs.  

 

3.4 Apoptosis and glycosylation 

 

The ability of cancer cells to avoid apoptosis is one of its a hallmark (Munkley et 

al., 2016). It has been shown that glycans are involved in many signaling pathways 

that lead to the initiation, progression, and resolution of apoptosis (Lichtenstein and 

Rabinovich, 2013). Glycosylation can influence the functions of TNFR1 (tumor 

necrosis factor receptor 1) and Fas (CD95) death receptors (Micheau, 2018). In 

various cells, the α2,6-linked sialylation of TNFR1 is accomplished by 

glycosyltransferase ST6Gal-I, and its higher expression leads to premalignant 

progression by reducing apoptosis in gastric cancer (Alexander et al., 2020). Recently 

it was shown that higher α-1,3 fucosylation of TNFR1 promotes its interaction with 

TNF-α and causes apoptosis (Yu et al., 2022). Mechanistically, the death receptors 

and their ligand's glycosylation can interfere with ligand-receptor interactions and 

helps in the formation of signaling molecules leading to ligand release from the 

effector cells (Munkley et al., 2016). Galectin-3 interaction with Fas suppresses 

controlled cell death signals (Fukumori et al., 2007) and enhances tumor cell growth 
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(Mazurek et al., 2011). The glycosphingolipid GD3 accumulates in cells, causing 

mitochondrial destruction and inducing apoptosis. In glioblastomas, adding an acetyl 

group to the terminal sialic acid (9-O-acetyl GD3) inhibits GD3-mediated controlled 

cell death and causes tumor survival (Munkley et al., 2016). Additionally, 

glycosylation of the ceramide via glucosylceramide synthase reduces the pro-

apoptotic potential of the ceramide (Liu et al., 2011). 

 

Apoptosis is also linked to telomere shortening. Telomerase activation occurs in 

around ninety percent of cancers and is a crucial step in carcinogenesis. A major 

mechanism of cancer-specific telomerase activation is the reactivation of transcription 

of hTERT (human telomerase reverse transcriptase) gene. There is no direct proof 

relating glycans to telomerase activation. However, glycosylation is indirectly related 

to telomerase activation through c-MYC glycosylation.  Earlier, it has been shown 

that O-GlcNAc modification of c-MYC stabilizes it and contributes to carcinogenesis 

(Itkonen et al., 2013; Munkley et al., 2016). C-MYC transactivates TERT and 

influences telomerase activation indirectly by contributing toward cancer progression.  

 

 4. Immunotherapy and role of glycosylation:  

 

One of the interventions in cancer treatment, immunotherapy, could be utilized 

for treatment and diagnosis. Siglecs on immune cells perform different functions, such 

as cell-homing receptors and antigen-specific immune responses (Foffi et al., 2013). 

CD22, a sialoglycoprotein, is one of the 16 siglec expressed on the surface of mature 

B cells, where it targets the binding of α2,6-linked sialic acid-containing ligands. The 

presence of ligands on N-glycans is responsible for inhibiting galectin 1 binding. This 

interaction is crucial for the B cell receptor (BCR) signaling on the cell membrane, 

followed by binding with antigen (Ereno-Orbea et al., 2017). Moreover, CD22 directs 

the cells toward α2,6- linked sialic acids tissues (Zhou et al., 2018). It was shown that 

CD22-deficient mice expressed mutated IgG antibodies which were somatically 

generated and autoreactive. These antibodies were of higher affinity than wild-type 

controls (O’Keefe et al., 1999). Thus, it concludes that CD22 plays a vital role in BCR 

signaling for the homeostatic balance of self-tolerance in cells and could be a drug 

target for diseases like systemic lupus erythematosus (Marshall et al., 2018). 

Additionally, siglec-1 or CD169 (aka sialoadhesin), play a similar role, but it binds to 

sialic acid with less affinity; that means ligands are highly sialylated and multimeric 

for enabling efficient interactions (Fraschilla and Pillai, 2017). CD169 plays a crucial 

role in combating many pathogens, including viruses and several inflammations 

(Eakin et al., 2016; Hammonds et al., 2017; Rose et al., 2016; Sewald et al., 2015). 

Siglecs bind to targeted glycans and play a function in inhibiting the immune 

surveillance of tumor cells (Dimitroff, 2015). For instance, the change in glycans at 

the cell surface can alter siglec-7 mediated cell toxicity of Natural Killer cells to 

participate in immune evasion (Hudak et al., 2014). Glycosylation of IgG antibodies is 

also shown in immune surveillance of tumor cells and used as a biomarker in different 

carcinomas (Kazuno et al., 2016; Ruhaak et al., 2015; Saldova et al., 2007; Vuckovic 
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et al., 2016). Targeting the various glycosylation alterations using different anti-tumor 

vaccines associated with specific tumor antigens is a good weapon for cancer 

treatment (Julien et al., 2012; Slovin et al., 1999). 

 

The protein family of selectins comprises E-selectin, P-selectin, or L-selectin, 

which in their glycosylated forms are mainly present on the inner layer of different 

cells as receptors, for instance, thrombocytes, endothelial cells, and leukocytes. 

Selectins are associated with early events of cellular adhesion mechanisms, as seen in 

ovarian cancer and tumor metastasis (Hassan et al., 2020).  A study on selectin 

demonstrated that a recombinant antibody formed against the P-selectins 

downregulates myocardial destruction post to percutaneous coronary intervention in 

myocardial infarction patients (Mertens et al., 2006). On similar grounds, selectins 

can be beneficial targets for Immunotherapy of cancer and other diseases.   

Variation in the glycosylation process is actively involved in malignancy in 

cancer, as suggested above (Pinho and Reis, 2015). The change in structures of 

specific glycan, for instance, branched N-glycans (Pinho and Reis, 2015), stage-

specific embryonic antigens including terminal sialylated and fucosylated Lewis 

structures and immature truncated O-glycans chains structures, (Kudelka et al., 2015; 

Radhakrishnan et al., 2014; Williams and Stanley, 2008), relates with many aspects of 

development and progression of cancer by disrupting the normal functions of different 

protein carriers molecules (Pinho and Reis, 2015; Radhakrishnan et al., 2014; 

Rodrigues et al., 2018). 

 

5. Glycoprotein as a diagnostic biomarkers tool  

 

Several statistics showed that early cancer diagnosis increases the chances of 

survival tremendously. Therefore, the introduction and in-depth study of new 

diagnostic biomarkers for cancer are of utmost importance. A defining characteristic 

of cancer is abnormal glycosylation. Most research has been conducted to find 

variations in serum glycan composition. Fucosylation and sialylation are drastically 

altered in most malignancies, as mentioned above. So, it is possible to employ 

aberrations in glycan structures as targets to enhance current serum cancer indicators 

(Tuccillo et al., 2014). 

 

Numerous studies have been carried out with a focus on uncovering diagnostic 

biomarkers for cancer involving glycosylation mechanisms (Table 1). One of these 

studies focuses on prostate cancer and its detection using a prostate-specific antigen 

(PSA). PSA is highly specific as a diagnostic marker, but its level rises in benign 

prostatic hyperplasia (BPH) along with prostate cancer. It was seen that α1,2-

fucosylated (Fucα1) and β-N-acetylgalactosaminylated (βGalNAc) PSA bound to 

Trichosanthes japonica agglutinin-II (TJA-II) column. However, this property was 

not seen in the case of hyperplasic patients indicating the increased expression of 

Fucα1 and βGalNAc of PSA during tumorigenesis. Additionally, it was found with 

greater than 95% accuracy. Therefore, TJA-II-bound PSA is a promising biomarker 
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for prostate cancer to distinguish between BPH and PC (Fukushima et al., 2010). 

Recently, the glycosylation of growth differentiation factor-15 was also found to be 

linked to prostate cancer (Wang et al., 2022).  

 

Studies showed that single-position Asn-glycosylation on GM2AP (GM2-

activator protein) was more abundant in the urine of lung cancer patients than in non-

cancerous individuals indicating that GM2AP unquestionably contributes to the 

growth of lung cancer. Lung cancer can be detected auxiliary using the level of 

GM2AP in serum and urine (Potprommanee et al., 2015; Scott and Salgia, 2008). The 

performance of GM2AP in lung cancer may be a useful prognostic indicator for non-

small cell lung cancer (particularly early) that can be utilized to forecast overall and 

disease-free survival. The use of this protein as a lung cancer diagnostic and 

prognostic marker has enormous potential. It was also demonstrated that 3- or 4-

antennary fucosylated and sialylated N-glycans were overexpressed in the sera of oral 

squamous cell carcinoma patients compared to the sera from healthy controls. 

Increased quantities of N-glycans of fucosylated 2-antennary-cum-di-sialylated, or 

fucosylated 4-antennary-cum-tetra-sialylated were discovered in serum from patients 

with lymphatic metastases and were proposed as prospective diagnostic biomarkers 

(Guu et al., 2017). Recently, gold nanocomposites were utilized to develop a label-

free immunosensor to detect lung cancer in urine and serum sample (Kuntamung et al., 

2021). 

 

In a study on urothelial cancer (UC) to ascertain whether abnormal N-

glycosylated blood immunoglobulins (Igs) can be used as a diagnostic indicator, it 

was found that that serum from 237 UC patients and 96 prostate cancer patients, when 

subjected to high-throughput N-glycomics showed 32 different N-glycan levels on Igs, 

which were then assessed using multivariable discriminant analysis (Tanaka et al., 

2017). Additionally, it was discovered that Igs carrying N-glycan of bisecting GlcNAc 

type was considerably high in UC. They reported more than 92 percent sensitivity and 

97 percent specificity in the diagnosis of UC patients using diagnostic N-glycan Score 

based on five N-glycans on Igs (Tanaka et al., 2017).  

Ovarian malignancy can be detected by analyzing the levels of human epididymis 

secretory protein 4 (HE4) which is a secreted glycoprotein. HE4 from ovarian cancer. 

It harbors more glycosylation in cancer samples than benign on (Zhuang et al., 2013). 

HE4 EIA test kit, developed by Fujirebio Diagnostics in 2008 and approved by the 

FDA, utilizes a solid phase and is a noncompetitive immunoassay that can be 

considered a suitable assay for ovarian cancer (Steffensen et al., 2011). This kit 

utilizes two monoclonal antibodies for detecting two whey-acidic protein domains of 

HE4.  The functionality of HE4 EIA is comparable to the MUC 16 assay, and it was 

also stated in a recent analysis that HE4 outperforms MUC16 in detecting early-stage 

ovarian cancer (Ferrarow et al., 2013).  

 

Table 1: Glycosylation-based biomarkers and detection methods for cancer 
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S.No Biomarker Cancer type Methods Used Reference 

1 Serum paraoxonase 1 

(PON1) 

Hepatocellula

r Carcinoma 

ELISA (Zhang et al., 

2015) 

2 LCA-reactive fraction 

of AFP (AFP-L3) 

Hepatocellula

r Carcinoma 

Radio Immuno 

assay 

(Sato et al., 

1993) 

3 SLe X Lung Cancer ELISA (Arnold et al., 

2011) 

4 WFA-positive 

L1CAM 

Cholangiocar

cinoma 

ELISA, MS, 

Micro-array 

(Matsuda et 

al., 2013) 

5 CA15-3 (MUC1) Breast Cancer IRMA (Kandylis et 

al., 1990) 

6 CA125 (MUC16) Ovarian 

Cancer 

ELISA (Bast et al., 

2010) 

7 TJA-II bound PSA Prostate 

Cancer 

Lactate levels, 

ELISA 

(Fukushima et 

al., 2010) 

8 α2,3-sialic acid in 

PSA 

Prostate 

Cancer 

Lactate levels 

ECLIA, 

ELLA, 

Biosensor 

(Llop et al., 

2016; 

Pihikova et 

al., 2016) 

9 Ganglioside GM3 Breast Cancer LC-MS, (RP)-

HPLC-FTMS 

(Li et al., 

2019) 

10 HER2 extracellular 

domain (ECD) 

Gastric 

Cancer 

CLIA (Oyama et al., 

2014) 

11 hAGP (Human α1-

acid-glycoprotein) 

Pancreatic 

Cancer 

Immunoaffinit

y 

chromatograph

y, μZIC-

HILIC-ESI-

MS 

(Gimenez et 

al., 2015) 

12 RNase 1 Pancreatic 

Cancer 

Resectable 

pancreatic 

cancer 

technique, 

MALDI-TOF 

(Peracaula et 

al., 2008) 
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MS, HPLC 

LC-ESI MS, 

ELISA 

13 

 

 

CEA Colorectal 

Cancer 

Immunoradio

metric 

analysis, 

Immunochemil

uminometric 

assays, 

Biosensor 

(Avelino et 

al., 2014; 

Pinho and 

Reis, 2015) 

14 

 

STn Gastric 

Cancer 

CLIA, 

Biosensor 

(Pinho and 

Reis, 2015; M 

Luísa S Silva 

et al., 2014) 

15 Human chorionic 

gonadotropin 

Ovarian 

Cancer 

ELISA, 

Immunoassay 

(Han et al., 

2018; Thomas 

et al., 2021) 

16 CA19-9 Ovarian 

Cancer 

Radio 

Immunoassay, 

Biosensor 

(Han et al., 

2018; Thapa 

et al., 2017; 

Thomas et al., 

2021; Wang 

et al., 2016) 

17 HER2 Breast Cancer Immunohistoc

hemistry, 

ELISA 

Western blot, 

Biosensor 

 

(Chocholova 

et al., 2018; 

Hao et al., 

2020; Pinho 

and Reis, 

2015; Zaleski 

et al., 2018) 

18 CA 27-29 Breast Cancer ELISA, 

Immunoassay 

(Hao et al., 

2020; Pinho 

and Reis, 

2015; Zaleski 

et al., 2018) 

19 AFP' core' 

fucosylation (AFP-L3) 

Hepatocellula

r Carcinoma 

Affinity 

chromatograph

y 

(Zhang et al., 

2020) 
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20 Pro PSA Prostate 

Cancer 

Lactate levels, 

ELISA 

(Gilgunn et 

al., 2013; Oto 

et al., 2020) 

 

The glycosylated proteins present in the serum of tumor tissue are used as the 

biomarker and also help to check the prognosis in patients and responses towards 

treatments, for instance, proteins such as MUC1, CEA, MUC16, and specific antigens 

towards prostate cancer (PSA) (Charpin et al., 1982; Frenette et al., 1994; Kumar et 

al., 2008; Marrelli et al., 2001; Steele et al., 1982). Carbohydrate antigen (CA 19-9) is 

usually detected with an antibody, which is further used to recognize SLea on a 

monosialoganglioside molecule, the first reported biomarker in gastrointestinal cancer. 

CA 19-9, a cancer antigen SLea, is often higher in the patient serum of various 

cancers, such as pancreatic, gastric, and colorectal. However, the mechanisms 

responsible for the elevation levels in serum having cancer are not clear. Possibly it is 

related to dysregulated sialyltransferases enzyme (Engle et al., 2019; Hartlapp et al., 

2022; Lee et al., 2020; Thomsen et al., 2018). The increase in CA 19-9 across many 

tumors highlights that aberrant glycosylation is a main factor involved in cancer 

pathobiology. Another crucial NLG alteration seen is α2,6-linked sialic acid, mainly 

raised in colon and pancreatic carcinoma with concomitant high expression of 

ST6Gal-I as discussed above. The increase in the ST6Gal-I expression is related to 

pathways for pro-survival, and its sialylated variants hamper the controlled cell death 

of tumor cells and activate various growth factors. 

 

Proteomics-based technologies have opened up a new horizon for utilizing novel 

protein biomarkers for cancer detection, as mentioned in the last section (Liang and 

Chan, 2007). The glycoproteomic plays an important role in this regard for the 

identification of cancer-specific aberrant glycosylation. As mentioned above, the 

crucial players are glycan biosynthesis pathways like glycosidases, 

glycosyltransferases which could alter glycans in cancer cells (Dennis et al., 1999; 

Drake et al., 2009; Dube and Bertozzi, 2005; Fukuda and Tsuboi, 1999; Fuster and 

Esko, 2005; Menyhart and Gyorffy, 2021; Oliveira et al., 2021). The comparison of 

cancer and healthy cell glycans can help in the identification of new biomarkers for 

diagnosis and treatment applications. Identifying such cancer-linked glycan 

modifications on glycoproteins may enhance the specificity of cancer biomarkers. 

Cancer has been linked to glycoproteins with specific glycan structures. These 

distinguishable molecules could be released into the bloodstream as potential 

biomarkers.  

 

The mucins (MUC1, MUC4, MUC13, and MUC16) significantly impact tumor 

progression and have recently been suggested as cancer treatment targets (Dhanisha et 

al., 2018). Levels of serum mucins that are secreted (MUC5AC and MUC6) or 

membranous (MUC1 and MUC16) are useful in diagnosis. The tumor-associated non-

mucin glycoproteins include human epidermal growth factor receptor 2 (HER2), PSA, 
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alpha-fetoprotein (AFP), and carcinoembryonic antigen (CEA). The aberrant 

glycosylation of a specific glycoprotein can be easily and specifically screened out to 

improve the sensitivity and specificity of diagnostic methods.  

 

 

 

Figure 7 Lectin-based biosensors for the detection of cancer-associated glycans.  

 

Several proteomics techniques like HPLC, 2D-electrophoresis, capillary 

electrophoresis and mass spectrometry are available for detecting and characterizing 

cancer-linked abnormal glycans. These techniques are not beneficial for rapid point-

of-care diagnostics due to the requirements of sophisticated instrumentation facilities 

and trained personnel to conduct the test. Several advanced detection methods have 

been developed for the detection of a biomarker such as AFP, PSA, and glycans, 

including immunofluorescence assay, electrochemiluminescence immunoassay 

(ECLIA), and electrochemical immunoassay. Each method has advantages and 

drawbacks.  

Among all, electrochemical immunoassays are better in terms of their capabilities, 

such as lower detection limit, rapid response, small sample volume, and minimal 

manipulations (Nagaraj et al., 2010; Yang et al., 2013). At present, cancer diagnosis 

by targeting aberrant glycosylation is attracting researchers across the globe due to its 
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accuracy and ability to detect cancer at its early stages. In this regard, lectin-based 

biosensors are getting the attention of researchers across the globe due to their specific 

binding affinities for the cancer-linked specific lectin structures (figure 7). Lectins are 

natural biomolecules with specific affinities for specific glycan structures and bind to 

them to form a strong complex. The affinity of lectins has proven to be a valuable 

asset for analytical methods for the selective separation of specific glycans in complex 

samples and for the characterization of glycosylation profiles using lectin microarrays 

in various clinical conditions. The development of Lectin-based biosensors has been 

reported to detect specific aberrant and cancer-associated glycostructures to aid in the 

diagnosis, prognosis, and treatment of these patients. Biosensors' appealing 

characteristics, such as portability and ease of use, make them ideal for point-of-care 

testing. Besides this, Tn and STn antigens can be detected by graphene-based glycan 

biosensors and lectine-based gold electrodes, respectively (Kveton et al., 2019; Silva 

et al., 2014). The α2,3-, and α2,6-sialylated glycans can also be detected in serum 

using electrochemical-based biosensors with high precision (Niu et al., 2016). The 

ultrasensitive glyco-biosensing analytical tools could help in the point-of-care 

detection of cancer biomarkers.  

 

6. Multi-Omics analysis for altered Glycosylation 

 

Multi-omics approach, involving genomics, transcriptomics, and proteomics along 

with clinical and pathological markers, have advanced our knowledge of the genetic 

landscapes of tumor. Multi-omics offers clear advantages for translational cancer 

research and reveals vital interactions through simple co-relations (Menyhart and 

Gyorffy, 2021; Oliveira et al., 2021). There are two ways to analyse omics data: top-

down and bottom-up integration strategies. The hypothesis-driven bottom-up strategy 

states that integrating several data first, then manually integrating individual clusters. 

Strong top-down techniques, in contrast, integrate all data types concurrently and 

permit both dimensionality reduction and data integration. Unsupervised, exploratory, 

supervised, predictive, regression, or semi-supervised analysis is all possible with 

integrative approaches. Although many tools combine several methods, data 

integration algorithms can also be roughly categorized as fusion-based, network-based, 

Bayesian, resemblance, correlation-based, and other multivariate methods (non-

negative matrix factorization, Joint and Individual Variation Explained and MoCluster 

etc.). Yet, the bulk of multi-omics integration tools are insufficiently reliable, prone to 

mistakes, and only accessible to experienced users’ knowledge of programming. 

 

Initial studies involving mRNA profiling or whole proteome analysis releveled some 

level of clustering or subtyping of cancer (Cancer Genome Atlas Research Network, 

2011; Du and Lovly, 2018; Zhang et al., 2016). In the recent past, there has been an 

advancement in clinical proteomics by measuring the differential changes in 

glycosylation patterns between cancer and normal cells/tissue. The techniques used 

for the detection include western blotting, mass spectrophotometry and radiolabeling 

using isotopes (Rossin et al., 2013). The mass spectrophotometry is most efficient tool 
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for detection of relevant peptides, but because of low ionization efficiency and 

stoichiometry of phosphopeptides, it is very difficult to detect them. Therefore, 

various methods like immobilized metal affinity and metal oxide affinity 

chromatography are widely used for enrichments of polypeptides.  

 

Glycoproteomic involving analysis of glycosite-containing peptides in cancer tissue 

could help in understanding the macro and micro-heterogeneity between various 

tumors and as well as with benign tissue (Li et al., 2017; Shah et al., 2015; Zhou et al., 

2017; Zhu et al., 2019). Glycoproteomic approach involving the mass spectrometry 

study of ovarian carcinoma revealed that the tumors could be delineated into various 

clusters and subtypes (Pan et al., 2020). Wang et al. quantified N-glycopeptides with a 

good accuracy score which was consistent with other multi-omic approaches taken to 

study differences between cancer cells and their stem cells (Wang et al., 2019). 

Cancer cells were studied by site- and structure-specific relatively quantitative N-

glycoproteomics which revealed various glycosylation sites in HepG2 and MCF-7 

cells (Xiao and Tian, 2019; Xue et al., 2020). Using SugarQuant and its GlycoBinder 

processing tool for data analysis, glycosylation changes at specific sites were 

determined in Burkitt's lymphoma cells after fulcosylation inhibition (Fang et al., 

2020). Similarly, the glycoproteomics approach revealed many site-specific 

glycosylation changes in cells expressing oncogenic mutations (Saraswat et al., 2022). 

Combining this information with site of glycosylation, mRNA levels of 

glycotransferases and glycosidases enzymes and other parameters, it was found that 

their expression level plays a critical role in inter-tumor heterogeneity and affect the 

clinical outcome also. Utilizing the similar approach for prostate cancer, the 

glycosylation of growth differentiation factor-15 is linked to castration-resistance 

(Wang et al., 2022). These studies could improve the disease's prognosis because it 

helps further our understanding related to the plasticity created by glycosylation on 

cancer marker proteins. Combining this information with molecular docking and 

pharmacology networking could further improve the prognosis and possibly cancer 

treatment(Lu et al., 2022). 

 

Table 2: Abbreviations Used  

 

S.No. Abbreviation Full form 

1.  AFP Alpha-fetoprotein 

2.  ALCAM Activated leukocyte cell adhesion molecule 

3.  ALG Asn-linked glycosylation 

4.  BCR B cell receptor 

5.  CEA Carcinoembryonic antigen 

6.  ECLIA Electrochemiluminescence Immunoassay 

7.  ECM Extracellular matrix 

8.  EGFR Epidermal growth factor receptor 

9.  ELISA Enzyme-linked immunosorbent assay 

10.  EMT Epithelial-to-Mesenchymal Transition 

11.  ER Endoplasmic Reticulum 
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12.  FAK Focal adhesion kinase  

13.  FoxM1 Forehead protein M1 

14.  Fucα1 α1,2-Fucosylated 

15.  GALNT3 N-acetyl galactosaminyl transferase 3 

16.  Glc Glucose 

17.  GlcNAc N-acetylglucosamine 

18.  GM2AP GM2-activator protein 

19.  GnT-V N-acetyl-glucosaminyl transferase V 

20.  HER2 Human epidermal growth factor receptor 2 

21.  ICAM-1 Intercellular adhesion molecule 1 

22.  Igs Immunoglobulins 

23.  Man Mannose 

24.  MUC1 Mucin 1 

25.  MYC Master regulation of cell entry and proliferative 

metabolism 

26.  NLG N-linked glycosylation 

27.  OLG O-linked glycosylation 

28.  PD-1 Programmed cell death protein 1 

29.  PD-L1 Programmed death ligand 1 

30.  PP2A Phosphatase 2A 

31.  PP-Dol Pyrophosphate residue 

32.  PSA Prostate cancer antigen 

33.  Ser Serine residue 

34.  SLea Sialyl Lewis a 

35.  SLeX Sialyl Lewis X 

36.  ST6Gal-I β-Gal α-2,6-sialyltransferase 

37.  STn Sialyl Tn 

38.  TGF-β Transforming growth factor-β 

39.  Thr Threonine residue 

40.  TJA-II Trichosanthes japonica agglutinin-II 

41.  UC Urothelial cancer 

42.  UDP Uridine diphosphate 

43.  Wnt Wingless/integrated signaling pathway 

44.  βGalNAc β-N-acetylgalactosaminylated 

45.  LC-MS Liquid chromatography–mass spectrometry 

46.  HPLC-FTMS HPLC-fourier-transform mass spectrometry 

47.  HPLC High-performance liquid chromatography 

48.  MALDI-TOF Matrix-assisted laser desorption/ionization-time of flight 

49.  LC-ESI MS Liquid Chromatography Electrospray Ionization Mass 

Spectrometric 

50.  CLIA Chemiluminescence Immunoassay 

51.  μZIC-HILIC-

ESI-MS 

Zwitterionic hydrophilic interaction capillary liquid 

chromatography electrospray mass spectrometry 

52.  IAC Immuno affinity Chromatography 

 

 

7. Conclusions and Future perspectives  
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The glycosylation variations in a glycoprotein and their specific tumorigenic 

pathways must be considered as a diagnostic biomarker and a new target for 

therapeutic applications. In Immunotherapy, antibodies and glycan initiate CAR-T 

cells, triggered by tumor-linked glycans or glycopeptides have potential tools for 

tumor treatment. The earlier developments in the area also give insight into the 

applications based on inhibitory effects either to targeted glycosylation-linked 

enzymes or to blocking glycan recognizing molecules. The glycome of tumor cells, its 

regulation on oncology and metastasis, and the interplay of cancer with the immune 

response will set a range of novel and improved therapies for various types of cancers. 
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 O- and N-linked glycosylation orchestrate proteoforms and their functions 

 Incomplete/neosynthesis of glycan protein lead to immune dysregulation 

and cancer 

 Signaling via PDGF, FGFR, EGFR, MET, RON, or IGFR receptors needs 

glycosylation 

 Multi-omics of tumors reveal heterogeneity in the glycosylation pattern  

 Tumor-specific glycans interact with CD43, CD45, selectins, galectins and 

siglecs 
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