101 research outputs found
Targeting CD20 in the treatment of interstitial lung diseases related to connective tissue diseases: A systematic review
INTRODUCTION: The effectiveness of CD20 targeting in connective tissue diseases (CTD) with lung involvement is controversial. This paper aims to review the current evidence about rituximab (RTX) use in CTD-related interstitial lung disease (ILD). METHODS: We performed a systematic review of papers published between January 2009 and May 2019. We included clinical trials, case/control studies and cohort studies. We excluded letters, case reports, case series, reviews, and full articles when not in English. The selected studies listed as primary or secondary outcome a variation in pulmonary function tests or in the scores used to radiologically stage lung involvement, in CTD-related ILD patients after RTX. RESULTS: Out of 1206 potentially eligible articles, 24 papers were selected: 3 retrospectively described cohorts of patients with different CTD, 14 dealt with systemic sclerosis (SSc)-related ILD, 5 with idiopathic inflammatory myopathies (IIMs)-related ILD, and 2 with Sjögren's Syndrome-related ILD. A direct comparison of the selected studies was hampered by their heterogeneity for outcomes, follow-up duration, the severity of lung involvement, and clinical features of study populations. However, an overall agreement existed concerning the effectiveness of RTX in the stabilization of lung disease, with some studies reporting an improvement of functional parameters from baseline. IIM-related ILD appeared more responsive than other CTD-related ILD to CD20 targeting. CONCLUSION: RTX is a promising therapeutic tool in CTD-related ILD. This systematic review remarks the unmet need of multicenter prospective studies aiming to evaluate the effectiveness of RTX with adequate sample size and study design
Role of Gas6 and TAM Receptors in the Identification of Cardiopulmonary Involvement in Systemic Sclerosis and Scleroderma Spectrum Disorders
Background: Few biomarkers are available for early identification of pulmonary arterial hypertension (PAH) and interstitial lung disease (ILD) in systemic sclerosis (SS) and scleroderma spectrum disorders (SSD).
Aims: To evaluate Gas6, sAxl, and sMer as biomarkers for cardiopulmonary complications of SS and SSD.
Methods: In a cross-sectional observational study, we recruited 125 consecutive patients, affected by SS and SSD and referred to a tertiary-level pulmonary hypertension outpatient clinic. All patients underwent a comprehensive evaluation for identification of PAH and ILD. Gas6, sMer, and sAxl concentrations were measured with ELISA protocols, and concentrations were compared according to PAH or ILD.
Results: Nineteen subjects had pulmonary hypertension (PH) (14 PAH), and 39 had ILD (6 severe). Plasma sMer was increased in PAH (18.6 ng/ml IQR [11.7-20.3]) with respect to the absence (12.4 [8.0-15.8]) or other form of pulmonary hypertension (9.6 [7.4-12.5]; K-W variance p < 0.04). Conversely, Gas6 and sAxl levels were slightly increased in mild ILD (25.8 ng/ml [19.5-32.1] and 24.6 [20.1-32.5]) and reduced in severe ILD (16.6 [15.0-22.1] and 15.5 [14.9-22.4]) in comparison to no evidence of ILD (23.4 [18.8-28.1] and 21.6 [18.1-28.4]; K-W, p 64 0.05). Plasma sMer 65 19 ng/ml has 50% sensitivity and 92% specificity in PAH identification (area under the ROC curve (AUC) 0.697, p < 0.03). Values of Gas6 64 24.5 ng/ml and of sAxl 64 15.5 ng/ml have 100% and 67% sensitivity and 47% and 86% specificity, respectively, in identifying severe ILD (Gas6 AUC 0.787, p < 0.001; sAxl AUC 0.705, p < 0.05).
Conclusions: The assay of Gas6 sAxl and sMer may be useful to help in the identification of PAH and ILD in SS and SSD patients. The Gas6/TAM system seems to be relevant in cardiopulmonary complications of SS and SSD and merits further investigations
Decreased Gas6 and sAxl Plasma Levels Are Associated with Hair Loss in COVID-19 Survivors
: Post-acute conditions after coronavirus disease 2019 (COVID-19) are quite common, although the underlying pathogenetic mechanisms leading to these conditions are not yet completely understood. In this prospective observational study, we aimed to test the hypothesis that Growth Arrest-Specific 6 (Gas6) and its soluble receptors, Axl (sAxl) and MerTK (sMer), might be implicated. A total of 263 subjects underwent a structured clinical evaluation one year after their hospital discharge for COVID-19, and they consented to donate a blood sample to measure their circulating Gas6, sAxl, and sMer levels. A total of 98 (37.3%) post-COVID-19 subjects complained of at least one residual physical symptom one year after their hospital discharge. Univariate analysis revealed that sAxl was marginally associated with residual symptoms, but at the level of logistic regression analysis, only the diffusing capacity of the lungs for carbon monoxide (DLCO) (OR 0.98, CI 95%: 0.96-0.99; p = 0.007) and the female sex (OR 2.49, CI 95%: 1.45-4.28; p = 0.001) were independently associated with long-lasting symptoms. A total of 69 (26.2%) subjects had hair loss. At the level of univariate analysis, Gas6, sAxl, DLCO, and the female gender were associated with its development. In a logistic regression analysis model, Gas6 (OR 0.96, CI 95%: 0.92-0.99; p = 0.015) and sAxl (OR 0.98, CI 95%; 0.97-1.0; p = 0.014), along with the female sex (OR 6.58, CI 95%: 3.39-12.78; p = 0.0001), were independent predictors of hair loss. Decreased levels of Gas6 and sAxl were associated with a history of hair loss following COVID-19. This was resolved spontaneously in most patients, although 23.7% complained of persistent hair loss one year after hospital discharge
Growth arrest-specific gene 6 expression in human breast cancer
Growth arrest-specific gene 6 (Gas6), identified in 1995, acts as the ligand to the Axl/Tyro3 family of tyrosine kinase receptors and exerts mitogenic activity when bound to these receptors. Overexpression of the Axl/Tyro3 receptor family has been found in breast, ovarian and lung tumours. Gas6 is upregulated 23-fold by progesterone acting through the progesterone receptor B (PRB). Recently, Gas6 has been shown to be a target for overexpression and amplification in breast cancer. Quantitative real-time PCR analysis was used to determine the levels of Gas6 mRNA expression in 49 primary breast carcinomas. Expression of PRB protein was evaluated immunohistochemically with a commercially available PRB antibody. The results showed a positive association between PRB protein and Gas6 mRNA levels (P=0.04). Gas6 correlated positively with a number of favourable prognostic variables including lymph node negativity (P=0.0002), younger age at diagnosis (P=0.04), smaller size of tumours (P=0.02), low Nottingham prognostic index scores (P=0.03) and low nuclear morphology (P=0.03). This study verifies for the first time the association between PRB and Gas6 in breast cancer tissue
The characteristics of impaired fasting glucose associated with obesity and dyslipidaemia in a Chinese population
<p>Abstract</p> <p>Background</p> <p>Different populations have diverse patterns of relationships between Impaired Fasting Glucose (IFG) and obesity and lipid markers, it is important to investigate the characteristics of associations between IFG and other related risk factors including body mass index (BMI), waist circumstance (WC), serum lipids and blood pressure (BP) in a Chinese population.</p> <p>Methods</p> <p>This was a case-control study of 648 IFG subjects and 1,296 controls derived from a large-scale, community-based, cross-sectional survey of 10,867 participants. Each subject received a face-to-face interview, physical examination, and blood tests, including fasting blood glucose and lipids. Student's <it>t</it>-test, Chi-square test, Spearman correlation and multiple logistic regressions were used for the statistical analyses.</p> <p>Results</p> <p>Fasting plasma glucose (FPG) was positively correlated with BMI, WC, systolic blood pressure (SBP), diastolic blood pressure (DBP), triglyceride (TG), and total cholesterol (TC), and was negatively correlated with high density lipoprotein-cholesterol (HDL-C) (all p < 0.05). BMI was more strongly correlated with IFG than with WC. The correlation coefficient of FPG was remarkably higher with TG (0.244) than with TC (0.134) and HDL-C (-0.192). TG was an important predictor of IFG, with odds ratios of 1.76 (95%CI: 1.31-2.36) for subjects with borderline high TG level (1.70 mmol/l ≤ TG < 2.26 mmol/l) and 3.13 (95% CI: 2.50-3.91) for those with higher TG level (TG ≥ 2.26 mmol/l), when comparing to subjects with TG < 1.70 mmol/l. There was a significant dose-response relationship between the number of abnormal variables and increased risk of IFG.</p> <p>Conclusions</p> <p>In this Chinese population, both BMI and WC were important predictors of IFG. Abnormal TG as a lipid marker was more strongly associated with IFG than were TC and HDL-C. These factors should be taken into consideration simultaneously for prevention of IFG.</p
GAS6 Enhances Repair Following Cuprizone-Induced Demyelination
Growth arrest-specific protein 6 (gas6) activities are mediated through the Tyro3, Axl, and Mer family of receptor tyrosine kinases. Gas6 is expressed and secreted by a wide variety of cell types, including cells of the central nervous system (CNS). In this study, we tested the hypothesis that administration of recombinant human Gas6 (rhGas6) protein into the CNS improves recovery following cuprizone withdrawal. After a 4-week cuprizone diet, cuprizone was removed and PBS or rhGas6 (400 ng/ml, 4 µg/ml and 40 µg/ml) was delivered by osmotic mini-pump into the corpus callosum of C57Bl6 mice for 14 days. Nine of 11 (82%) PBS-treated mice had abundant lipid-associated debris in the corpus callosum by Oil-Red-O staining while only 4 of 19 (21%) mice treated with rhGas6 had low Oil-Red-O positive droplets. In rhGas6-treated mice, SMI32-positive axonal spheroids and APP-positive deposits were reduced in number relative to PBS-treated mice. Compared to PBS, rhGas6 enhanced remyelination as revealed by MBP immunostaining and electron microscopy. The rhGas6-treated mice had more oligodendrocytes expressing Olig1 in the cytoplasm, indicative of oligodendrocyte progenitor cell maturation. Relative to PBS-treated mice, rhGas6-treated mice had fewer activated microglia in the corpus callosum by Iba1 immunostaining. The data show that rhGas6 treatment resulted in more efficient repair following cuprizone-induced injury
Transcriptional activation of the Axl and PDGFR-α by c-Met through a ras- and Src-independent mechanism in human bladder cancer
<p>Abstract</p> <p>Background</p> <p>A cross-talk between different receptor tyrosine kinases (RTKs) plays an important role in the pathogenesis of human cancers.</p> <p>Methods</p> <p>Both NIH-Met5 and T24-Met3 cell lines harboring an inducible human c-Met gene were established. C-Met-related RTKs were screened by RTK microarray analysis. The cross-talk of RTKs was demonstrated by Western blotting and confirmed by small interfering RNA (siRNA) silencing, followed by elucidation of the underlying mechanism. The impact of this cross-talk on biological function was demonstrated by Trans-well migration assay. Finally, the potential clinical importance was examined in a cohort of 65 cases of locally advanced and metastatic bladder cancer patients.</p> <p>Results</p> <p>A positive association of Axl or platelet-derived growth factor receptor-alpha (PDGFR-α) with c-Met expression was demonstrated at translational level, and confirmed by specific siRNA knock-down. The transactivation of c-Met on Axl or PDGFR-α <it>in vitro </it>was through a <it>ras</it>- and Src-independent activation of mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK/ERK) pathway. In human bladder cancer, co-expression of these RTKs was associated with poor patient survival (<it>p </it>< 0.05), and overexpression of c-Met/Axl/PDGFR-α or c-Met alone showed the most significant correlation with poor survival (<it>p </it>< 0.01).</p> <p>Conclusions</p> <p>In addition to c-Met, the cross-talk with Axl and/or PDGFR-α also contributes to the progression of human bladder cancer. Evaluation of Axl and PDGFR-α expression status may identify a subset of c-Met-positive bladder cancer patients who may require co-targeting therapy.</p
Stratification of biological therapies by pathobiology in biologic-naive patients with rheumatoid arthritis (STRAP and STRAP-EU): two parallel, open-label, biopsy-driven, randomised trials
BACKGROUND: Despite highly effective targeted therapies for rheumatoid arthritis, about 40% of patients respond poorly, and predictive biomarkers for treatment choices are lacking. We did a biopsy-driven trial to compare the response to rituximab, etanercept, and tocilizumab in biologic-naive patients with rheumatoid arthritis stratified for synovial B cell status. METHODS: STRAP and STRAP-EU were two parallel, open-label, biopsy-driven, stratified, randomised, phase 3 trials done across 26 university centres in the UK and Europe. Biologic-naive patients aged 18 years or older with rheumatoid arthritis based on American College of Rheumatology (ACR)–European League Against Rheumatism classification criteria and an inadequate response to conventional synthetic disease-modifying antirheumatic drugs (DMARDs) were included. Following ultrasound-guided synovial biopsy, patients were classified as B cell poor or B cell rich according to synovial B cell signatures and randomly assigned (1:1:1) to intravenous rituximab (1000 mg at week 0 and week 2), subcutaneous tocilizumab (162 mg per week), or subcutaneous etanercept (50 mg per week). The primary outcome was the 16-week ACR20 response in the B cell-poor, intention-to-treat population (defined as all randomly assigned patients), with data pooled from the two trials, comparing etanercept and tocilizumab (grouped) versus rituximab. Safety was assessed in all patients who received at least one dose of study drug. These trials are registered with the EU Clinical Trials Register, 2014-003529-16 (STRAP) and 2017-004079-30 (STRAP-EU). FINDINGS: Between June 8, 2015, and July 4, 2019, 226 patients were randomly assigned to etanercept (n=73), tocilizumab (n=74), and rituximab (n=79). Three patients (one in each group) were excluded after randomisation because they received parenteral steroids in the 4 weeks before recruitment. 168 (75%) of 223 patients in the intention-to-treat population were women and 170 (76%) were White. In the B cell-poor population, ACR20 response at 16 weeks (primary endpoint) showed no significant differences between etanercept and tocilizumab grouped together and rituximab (46 [60%] of 77 patients vs 26 [59%] of 44; odds ratio 1·02 [95% CI 0·47–2·17], p=0·97). No differences were observed for adverse events, including serious adverse events, which occurred in six (6%) of 102 patients in the rituximab group, nine (6%) of 108 patients in the etanercept group, and three (4%) of 73 patients in the tocilizumab group (p=0·53). INTERPRETATION: In this biologic-naive population of patients with rheumatoid arthrtitis, the dichotomic classification into synovial B cell poor versus rich did not predict treatment response to B cell depletion with rituximab compared with alternative treatment strategies. However, the lack of response to rituximab in patients with a pauci-immune pathotype and the higher risk of structural damage progression in B cell-rich patients treated with rituximab warrant further investigations into the ability of synovial tissue analyses to inform disease pathogenesis and treatment response. FUNDING: UK Medical Research Council and Versus Arthritis
Influence of antisynthetase antibodies specificities on antisynthetase syndrome clinical spectrum time course
Antisynthetase syndrome (ASSD) is a rare clinical condition that is characterized by the occurrence of a classic clinical triad, encompassing myositis, arthritis, and interstitial lung disease (ILD), along with specific autoantibodies that are addressed to different aminoacyl tRNA synthetases (ARS). Until now, it has been unknown whether the presence of a different ARS might affect the clinical presentation, evolution, and outcome of ASSD. In this study, we retrospectively recorded the time of onset, characteristics, clustering of triad findings, and survival of 828 ASSD patients (593 anti-Jo1, 95 anti-PL7, 84 anti-PL12, 38 anti-EJ, and 18 anti-OJ), referring to AENEAS (American and European NEtwork of Antisynthetase Syndrome) collaborative group's cohort. Comparisons were performed first between all ARS cases and then, in the case of significance, while using anti-Jo1 positive patients as the reference group. The characteristics of triad findings were similar and the onset mainly began with a single triad finding in all groups despite some differences in overall prevalence. The "ex-novo" occurrence of triad findings was only reduced in the anti-PL12-positive cohort, however, it occurred in a clinically relevant percentage of patients (30%). Moreover, survival was not influenced by the underlying anti-aminoacyl tRNA synthetase antibodies' positivity, which confirmed that antisynthetase syndrome is a heterogeneous condition and that antibody specificity only partially influences the clinical presentation and evolution of this condition
Identification of Gene Networks and Pathways Associated with Guillain-Barré Syndrome
BACKGROUND: The underlying change of gene network expression of Guillain-Barré syndrome (GBS) remains elusive. We sought to identify GBS-associated gene networks and signaling pathways by analyzing the transcriptional profile of leukocytes in the patients with GBS. METHODS AND FINDINGS: Quantitative global gene expression microarray analysis of peripheral blood leukocytes was performed on 7 patients with GBS and 7 healthy controls. Gene expression profiles were compared between patients and controls after standardization. The set of genes that significantly correlated with GBS was further analyzed by Ingenuity Pathways Analyses. 256 genes and 18 gene networks were significantly associated with GBS (fold change ≥2, P<0.05). FOS, PTGS2, HMGB2 and MMP9 are the top four of 246 significantly up-regulated genes. The most significant disease and altered biological function genes associated with GBS were those involved in inflammatory response, infectious disease, and respiratory disease. Cell death, cellular development and cellular movement were the top significant molecular and cellular functions involved in GBS. Hematological system development and function, immune cell trafficking and organismal survival were the most significant GBS-associated function in physiological development and system category. Several hub genes, such as MMP9, PTGS2 and CREB1 were identified in the associated gene networks. Canonical pathway analysis showed that GnRH, corticotrophin-releasing hormone and ERK/MAPK signaling were the most significant pathways in the up-regulated gene set in GBS. CONCLUSIONS: This study reveals the gene networks and canonical pathways associated with GBS. These data provide not only networks between the genes for understanding the pathogenic properties of GBS but also map significant pathways for the future development of novel therapeutic strategies
- …