22 research outputs found

    Impact of Seawater Temperature on Coral Reefs in the Context of Climate Change. A Case Study of Cu Lao Cham – Hoi An Biosphere Reserve

    Get PDF
    Coral reefs are a natural habitat for many species, as well as being of high economic and touristic significance. However, they represent an extremely sensitive ecosystem with a narrow ecological limit: prolonged high temperatures can lead to bleaching, in which corals expel their symbiotic algae and eventually corals will degrade and die. Based on climate change projections from the Blue Communities regional model, using linear regression, exponential regression, polynomial regression, we found that by the decades 2041–2050 and 2051–2060, whether with RCP 4.5 or RCP 8.5, the environmental temperature will change beyond the coral capacity threshold. Of particular concern is RCP 8.5, where the number of weeks per decade in which SST exceeds the threshold of coral reef bleaching is up to 55, compared to 0 at the beginning of the century. As well, the El Niño phenomenon often heats up waters to abnormally high temperatures in Cu Lao Cham and, it is projected to rise even further. Consequently, the combination of climate change and El Niño will cause abnormal increases in the seawater environment beyond the coral resistance threshold, leading to degradation of this internationally important site. Decisive and practical action must be taken to deal with climate change in this part of the world

    Climate change on sea currents is not expected to alter contemporary migration routes of loggerhead sea turtles

    Get PDF
    For marine species, traveling with the current potentially reduces energetic costs. Still, the extent to which organisms adjust routes to follow current flow remains an open question. Moreover, the extent to which climate change is altering sea currents, and in turn species migration routes, remains unknown, representing a major challenge to spatial ecology and conservation efforts.We developed an approach to assess the extent to which projected optimal paths and corridors overlap with the observed migration routes of loggerhead sea turtles (Caretta caretta), minimizing exposure to opposing sea currents. To illustrate this approach, we used migratory tracks of the species traveling between breeding and foraging areas in the Mediterranean Sea. We calculated the energetic costs to sea turtles based on actual tracks and corresponding optimal paths. We also explored whether projected changes in ocean currents, driven by climate change, would alter the spatial patterns of optimal routes.The energetic cost of observed tracks was, on average, 1.25 times higher than that of corresponding optimal paths. While optimal corridors differed spatially to observed corridors used by loggerheads, some positive correlations still existed for three cases ( 0.43, 0.42, 0.30). Climate change projections showed no significant change to the migratory movement of sea turtles, as corridors for different climatic conditions overlapped by at least 70%.Our results show that loggerheads do not explicitly take advantage of ocean currents to facilitate long distance migrations and reduce energetic demands. The contemporary and future migration routes are characterized by similar energetic demands and together with their strong spatial overlap suggest that climate change is expected to minimally alter the species migration routes in the future. The approach presented here could be applied to different spatial scales and marine taxa, allowing possible mechanisms between sea currents (or other environmental characteristics) and species movements to be elucidated

    Krill (Euphausia superba) distribution contracts southward during rapid regional warming

    Get PDF
    High-latitude ecosystems are among the fastest warming on the planet1. Polar species may be sensitive to warming and ice loss, but data are scarce and evidence is conflicting2,3,4. Here, we show that, within their main population centre in the southwest Atlantic sector, the distribution of Euphausia superba (hereafter, ‘krill’) has contracted southward over the past 90 years. Near their northern limit, numerical densities have declined sharply and the population has become more concentrated towards the Antarctic shelves. A concomitant increase in mean body length reflects reduced recruitment of juvenile krill. We found evidence for environmental controls on recruitment, including a reduced density of juveniles following positive anomalies of the Southern Annular Mode. Such anomalies are associated with warm, windy and cloudy weather and reduced sea ice, all of which may hinder egg production and the survival of larval krill5. However, the total post-larval density has declined less steeply than the density of recruits, suggesting that survival rates of older krill have increased. The changing distribution is already perturbing the krill-centred food web6 and may affect biogeochemical cycling7,8. Rapid climate change, with associated nonlinear adjustments in the roles of keystone species, poses challenges for the management of valuable polar ecosystems3

    Climate-smart spatial planning assessment in support of conservation and blue growth in Da Nang city’s marine environment.

    Get PDF
    This study assessed ocean climate modelling datasets to establish what sensitivities to climate change could be identified for species of commercial and conservation value in the waters of Da Nang City, Vietnam, and what actions could be taken to support their adaptation to these pressures. Commissioned via the UK Research Councils Official Development Assistance national Capability funded project ‘Addressing Challenges of Coastal Communities through Ocean Research for Developing Economies’ (ACCORD), and co-developed with the Da Nang Da Nang Department of Natural Resources and Environment with the support of PEMSEA, our main ambition was to highlight what spatial management activities could be undertaken in the waters off the city to support climate change adaptation in its resources. We identified substantial sensitivities of species of commercial and conservation value across the whole bay and its offshore waters to climate change under increasing global greenhouse emissions. For species that occupy the water column (as opposed t the seabed), this sensitivity appeared to be concentrated in the southern part of the bay. Importantly, fishing pressure exacerbated the pressure of climate change on pelagic target species, highlighting the challenges of delivering food security and a growing blue economy imposed by a changing climate. Additionally, lowered emissions, in line with the Paris Agreement, would deliver clear benefits to all types of species assessed, supporting a more sustainable path for the exploration of Da Nang’s marine resources and it’s blue economy. Recommendations are made about how the Coastal Use Zoning Plan for Da Nang City could be adapted to support climate change adaptation in these species and habitats, and well as the broader sustainability of these ecosystems

    Temperature–Induced Hatch Failure and Nauplii Malformation in Antarctic Krill

    Get PDF
    Antarctic krill inhabit areas of the Southern Ocean that can exceed 4.0◦C, yet they preferentially inhabit regions with temperatures of −1.5 to ≤1.5◦C. Successful embryonic development and hatching are key to their life cycle, but despite the rapid climatic warming seen across their main spawning areas, the effects of elevated temperatures on embryogenesis, hatching success, and nauplii malformations are unknown. We incubated 24,483 krill embryos in two independent experiments to investigate the hypothesis that temperatures exceeding 1.5◦C have a negative impact on hatching success and increase the numbers of malformed nauplii. Field experiments were on krill collected from near the northern, warm limit of their range and embryos incubated soon after capture, while laboratory experiments were on embryos from krill acclimated to laboratory conditions. The hatching success of embryo batches varied enormously, from 0 to 98% (mean 27%). Both field and laboratory experiments showed that hatching success decreased markedly above 3.0◦C. Our field experiments also showed an approximate doubling of the percentage of malformed nauplii at elevated temperatures, reaching 50% at 5.0◦C. At 3.0◦C or below, however, temperature was not the main factor driving the large variation in embryo hatching success. Our observations of highly variable and often low success of hatching to healthy nauplii suggest that indices of reproductive potential of female krill relate poorly to the subsequent production of viable krill larvae and may help to explain spatial discrepancies between the distribution of the spawning stock and larval distribution

    Comment. What drives plankton seasonality in a stratifying shelf sea? Some competing and complementary theories

    Get PDF
    The Plymouth L4 time plankton series in the Western English Channel is a textbook example of a shallow, stratifying shelf sea system. Over its 30 yr of weekly sampling, this site has provided a diverse and contrasting suite of numerical and conceptual models of plankton bloom formation, phenology, and seasonal succession. The most recent of these papers, Kenitz et al. (2017) has initiated this comment, partly because we feel that it has presented a slightly misleading picture of the plankton composition at this site, and of a robust, recurring seasonal succession. We address this by illustrating the extent of inter‐annual variability in phenology that occurs at the site, and which needs to be captured better within models. However our main aim is to foster a much better integration of the variety of top‐down and bottom‐up processes that have all been suggested to be key in driving seasonal succession. Some of these, particularly the multiple grazing and growth controls contributing to the so‐called “loophole hypothesis” may be complementary, but others, such as the role of copepod feeding traits in driving species succession (Kenitz et al. 2017) offer testable competing hypotheses. The basic assumptions and outputs of all these models need to be validated more critically, both against time series data and process studies that include the finding of unselective feeding. We suggest that the variability in plankton phenology (and not just mean timing and amplitude) could be used to diagnose the performance of alternative models of plankton succession

    Large projected reductions in marine fish biomass for Kenya and Tanzania in the absence of climate mitigation

    Get PDF
    Climate change is projected to cause significant reductions in global fisheries catch during the 21st Century. Yet, little is understood of climate change impacts on tropical fisheries, which support many livelihoods, as is the case in the Western Indian Ocean region (WIO). Here, we focus on two central WIO countries ― Kenya and Tanzania ― and run a multi-species fish model (Size Spectrum Dynamic Bio-climate Envelope Model; SS-DBEM) for 43 species of commercial and artisanal importance, to investigate the effects of climate change. We include both national Exclusive Economic Zones (EEZs) as domains. The model was forced by data from a biogeochemical model (NEMO-MEDUSA), run under the high emissions scenario Representative Concentration Pathway (RCP) 8.5, until the end of the 21st century. Impacts of fisheries and climate change were investigated by running SS-DBEM under five scenarios of fishing pressures to predict a range of possible future scenarios. Fishing pressure was represented as the Maximum Sustainable Yield (MSY), expressed as MSY0, MSY1, MSY2, MSY3 and MSY4 representing fishing mortality of 0, 1, 2, 3 and 4 times MSY, respectively. Large reductions in average fish biomass were projected over the 21st Century, with median reductions of fish species biomass of 63–76% and 56–69% for the Kenyan and Tanzanian EEZs respectively across the fishing scenarios. Tunas were particularly impacted by future climate change, with the six modelled species exhibiting biomass reductions of at least 70% in both EEZs for all fishing scenarios during the 21st Century. Reductions in fish biomass were much more severe during the second half of the 21st Century, highlighting the benefits to tropical fisheries of global action on climate change

    Bright spots as climate‐smart marine spatial planning tools for conservation and blue growth

    Get PDF
    Marine spatial planning that addresses ocean climate-driven change (‘climate-smart MSP’) is a global aspiration to support economic growth, food security and ecosystem sustainability. Ocean climate change (‘CC’) modelling may become a key decision-support tool for MSP, but traditional modelling analysis and communication challenges prevent their broad uptake. We employed MSP-specific ocean climate modelling analyses to inform a real-life MSP process; addressing how nature conservation and fisheries could be adapted to CC. We found that the currently planned distribution of these activities may become unsustainable during the policy's implementation due to CC, leading to a shortfall in its sustainability and blue growth targets. Significant, climate-driven ecosystem-level shifts in ocean components underpinning designated sites and fishing activity were estimated, reflecting different magnitudes of shifts in benthic versus pelagic, and inshore versus offshore habitats. Supporting adaptation, we then identified: CC refugia (areas where the ecosystem remains within the boundaries of its present state); CC hotspots (where climate drives the ecosystem towards a new state, inconsistent with each sectors’ present use distribution); and for the first time, identified bright spots (areas where oceanographic processes drive range expansion opportunities that may support sustainable growth in the medium term). We thus create the means to: identify where sector-relevant ecosystem change is attributable to CC; incorporate resilient delivery of conservation and sustainable ecosystem management aims into MSP; and to harness opportunities for blue growth where they exist. Capturing CC bright spots alongside refugia within protected areas may present important opportunities to meet sustainability targets while helping support the fishing sector in a changing climate. By capitalizing on the natural distribution of climate resilience within ocean ecosystems, such climate-adaptive spatial management strategies could be seen as nature-based solutions to limit the impact of CC on ocean ecosystems and dependent blue economy sectors, paving the way for climate-smart MSP

    Building bridges between natural and social science disciplines: a standardized methodology to combine data on ecosystem quality trends

    Get PDF
    Despite a growing interest in interdisciplinary research, systematic ways of how to integrate data from different disciplines are still scarce. We argue that successful resource management relies on two key data sources: natural science data, which represents ecosystem structure and processes, and social science data, which describes people’s perceptions and understanding. Both are vital, mutually complementing information sources that can underpin the development of feasible and effective policies and management interventions. To harvest the added value of combined knowledge, a uniform scaling system is needed. In this paper, we propose a standardized methodology to connect and explore different types of quantitative data from the natural and social sciences reflecting temporal trends in ecosystem quality. We demonstrate this methodology with different types of data such as fisheries stocks and mangrove cover on the one hand and community’s perceptions on the other. The example data are collected from three United Nations Educational Scientific and Cultural Organization (UNESCO) Biosphere reserves and one marine park in Southeast Asia. To easily identify patterns of convergence or divergence among the datasets, we propose heat maps using colour codes and icons for language- and education-independent understandability. Finally, we discuss the limitations as well as potential implications for resource management and the accompanying communication strategies. This article is part of the theme issue ‘Nurturing resilient marine ecosystems’

    ERSEM 15.06: a generic model for marine biogeochemistry and the ecosystem dynamics of the lower trophic levels

    Get PDF
    The European Regional Seas Ecosystem Model (ERSEM) is one of the most established ecosystem models for the lower trophic levels of the marine food web in the scientific literature. Since its original development in the early nineties it has evolved significantly from a coastal ecosystem model for the North Sea to a generic tool for ecosystem simulations from shelf seas to the global ocean. The current model release contains all essential elements for the pelagic and benthic parts of the marine ecosystem, including the microbial food web, the carbonate system, and calcification. Its distribution is accompanied by a testing framework enabling the analysis of individual parts of the model. Here we provide a detailed mathematical description of all ERSEM components along with case studies of mesocosm-type simulations, water column implementations, and a brief example of a full-scale application for the north-western European shelf. Validation against in situ data demonstrates the capability of the model to represent the marine ecosystem in contrasting environments
    corecore