182 research outputs found

    Dominant and differential deposition of distinct β-amyloid peptide species, AβN3(pE), in senile plaques

    Get PDF
    AbstractWe analyzed an amino-terminal modification of β-amyloid (Aβ) peptide in brain, using anti-Aβ antibodies that distinguish distinct molecular species. Examination of cortical sections from 28 aged individuals with a wide range in senile plaque density revealed that a molecular species distinct from the standard Aβ is deposited in the brain in a dominant and differential manner. This modified Aβ peptide (AβN3(pE)) starts at the 3rd amino-terminal residue of the standard Aβ, glutamate, converted to pyroglutamate through intramolecular dehydration. Because plaques composed of AβN3(pE) are present in equivalent or greater densities than those composed of standard Aβ bearing the first aminoterminal residue (AβN1) and because deposition of the former species appears to precede deposition of the latter, as confirmed with specimens from Down's syndrome patients, the processes involved in AβN3(pE) production and retention may play an early and critical role in senile plaque formation

    Amyloid Beta Annular Protofibrils in Cell Processes and Synapses Accumulate with Aging and Alzheimer-Associated Genetic Modification

    Get PDF
    Amyloid β (Aβ) annular protofibrils (APFs) have been described where the structure is related to that of β barrel pore-forming bacterial toxins and exhibits cellular toxicity. To investigate the relationship of Aβ APFs to disease and their ultrastructural localization in brain tissue, we conducted a pre-embedding immunoelectron microscopic study using anti-annular protofibril antiserum. We examined brain tissues of young- and old-aged amyloid precursor protein transgenic mice (APP23), neprilysin knockout APP23 mice, and nontransgenic littermates. αAPF-immunoreactions tended to be found (1) on plasma membranes and vesicles inside of cell processes, but not on amyloid fibrils, (2) with higher density due to aging, APP transgene, and neprilysin deficiency, and (3) with higher positive rate at synaptic compartments in aged APP23, especially in neprilysin knockout APP23 mice. These findings imply that APFs are distinct from amyloid fibrils, interact with biological membranes, and might be related to synaptic dysfunction in Alzheimer model mouse brains

    Impairment in novelty-promoted memory via behavioral tagging and capture before apparent memory loss in a knock-in model of Alzheimer’s disease

    Get PDF
    Alzheimer’s disease (AD) is associated with cognitive impairments and age-dependent memory deficits which have been studied using genetic models of AD. Whether the processes for modulating memory persistence are more vulnerable to the influence of amyloid pathology than the encoding and consolidation of the memory remains unclear. Here, we investigated whether early amyloid pathology would affect peri-learning novelty in promoting memory, through a process called behavioral tagging and capture (BTC). App(NL-G-F/NL-G-F) mice and wild-type littermates were trained in an appetitive delayed matching-to-place (ADMP) task which allows for the assessment of peri-learning novelty in facilitating memory. The results show that novelty enabled intermediate-term memory in wild-type mice, but not in App(NL-G-F/NL-G-F) mice in adulthood. This effect preceded spatial memory impairment in the ADMP task seen in middle age. Other memory tests in the Barnes maze, Y-maze, novel object or location recognition tasks remained intact. Together, memory modulation through BTC is impaired before apparent deficits in learning and memory. Relevant biological mechanisms underlying BTC and the implication in AD are discussed

    Comprehensive behavioral phenotyping of calpastatin-knockout mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Calpastatin is an endogenous inhibitor of calpain, intracellular calcium-activated protease. It has been suggested to be involved in molecular mechanisms of long-term plasticity and excitotoxic pathways. However, functions of calpastatin in vivo are still largely unknown. To examine the physiological roles of calpastatin, we subjected calpastatin-knockout mice to a comprehensive behavioral test battery.</p> <p>Results</p> <p>Calpastatin-knockout mice showed decreased locomotor activity under stressful environments, and decreased acoustic startle response, but we observed no significant change in hippocampus-dependent memory function.</p> <p>Conclusion</p> <p>These results suggest that calpastatin is likely to be more closely associated with affective rather than cognitive aspects of brain function.</p

    Транспортный комплекс в экономике России и его реформирование (на примере ООО ТЦП - Томский центр перевозок)

    Get PDF
    В данной работе была затронута тема о специфике работы транспортной логистики, проанализированы данные компании ООО "ТЦП", выявлены основные проблемы и проведена аналитика деятельности компанииIn this work, the topic of the specifics of the transport logistics analyzed the data of the company LLC TSP identified the main problems and carried out Analytics of the compan

    Assessing Sex-Specific Circadian, Metabolic, and Cognitive Phenotypes in the AβPP/PS1 and APPNL-F/NL-F Models of Alzheimer\u27s Disease.

    Get PDF
    BACKGROUND: Circadian disruption has long been recognized as a symptom of Alzheimer\u27s disease (AD); however, emerging data suggests that circadian dysfunction occurs early on in disease development, potentially preceding any noticeable cognitive deficits. OBJECTIVE: This study compares the onset of AD in male and female wild type (C57BL6/J), transgenic (AβPP/PS1), and knock-in (APPNL-F/NL-F) AD mouse models from the period of plaque initiation (6 months) through 12 months. METHODS: Rhythmic daily activity patterns, glucose sensitivity, cognitive function (Morris water maze, MWM), and AD pathology (plaques formation) were assessed. A comparison was made across sexes. RESULTS: Sex-dependent hyperactivity in AβPP/PS1 mice was observed. In comparison to C57BL/6J animals, 6-month-old male AβPP/PS1 demonstrated nighttime hyperactivity, as did 12-month-old females. Female AβPP/PS1 animals performed significantly worse on a MWM task than AβPP/PS1 males at 12 months and trended toward increased plaque pathology. APPNL-F/NL-F 12-month-old males performed significantly worse on the MWM task compared to 12-month-old females. Significantly greater plaque pathology occurred in AβPP/PS1 animals as compared to APPNL-F/NL-F animals. Female AβPP/PS1 animals performed significantly worse than APPNL-F/NL-F animals in spatial learning and memory tasks, though this was reversed in males. CONCLUSION: Taken together, this study provides novel insights into baseline sex differences, as well as characterizes baseline diurnal activity variations, in the AβPP/PS1 and APPNL-F/NL-F AD mouse models

    Activation of calpain-1 in human carotid artery atherosclerotic lesions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In a previous study, we observed that oxidized low-density lipoprotein-induced death of endothelial cells was calpain-1-dependent. The purpose of the present paper was to study the possible activation of calpain in human carotid plaques, and to compare calpain activity in the plaques from symptomatic patients with those obtained from patients without symptoms.</p> <p>Methods</p> <p>Human atherosclerotic carotid plaques (n = 29, 12 associated with symptoms) were removed by endarterectomy. Calpain activity and apoptosis were detected by performing immunohistochemical analysis and TUNEL assay on human carotid plaque sections. An antibody specific for calpain-proteolyzed α-fodrin was used on western blots.</p> <p>Results</p> <p>We found that calpain was activated in all the plaques and calpain activity colocalized with apoptotic cell death. Our observation of autoproteolytic cleavage of the 80 kDa subunit of calpain-1 provided further evidence for enzyme activity in the plaque samples. When calpain activity was quantified, we found that plaques from symptomatic patients displayed significantly lower calpain activity compared with asymptomatic plaques.</p> <p>Conclusion</p> <p>These novel results suggest that calpain-1 is commonly active in carotid artery atherosclerotic plaques, and that calpain activity is colocalized with cell death and inversely associated with symptoms.</p

    Modality-Specific Impairment of Hippocampal CA1 Neurons of Alzheimer’s Disease Model Mice

    Get PDF
    Impairment of episodic memory, a class of memory for spatiotemporal context of an event, is an early symptom of Alzheimer's disease. Both spatial and temporal information are encoded and represented in the hippocampal neurons, but how these representations are impaired under amyloid β (Aβ) pathology remains elusive. We performed chronic imaging of the hippocampus in awake male amyloid precursor protein (App) knock-in mice behaving in a virtual reality environment to simultaneously monitor spatiotemporal representations and the progression of Aβ depositions. We found that temporal representation is preserved, while spatial representation is significantly impaired in the App knock-in mice. This is due to the overall reduction of active place cells but not time cells, and compensatory hyperactivation of remaining place cells near Aβ aggregates. These results indicate the differential impact of Aβ aggregates on two major modalities of episodic memory, suggesting different mechanisms for forming and maintaining these two representations in hippocampus.SIGNIFICANCE STATEMENT:Spatiotemporal memory impairments are common at the early stage of Alzheimer's disease patients. We demonstrate the different impairment patterns of place and time cells in the dorsal hippocampus of head-fixed App knock-in mouse by in vivo two-photon calcium imaging over months under the virtual reality spatiotemporal tasks. These results highlight that place cells were preferentially and gradually damaged nearby Aβ aggregates, while time cells were less vulnerable. We further show these impairments were due to neuronal hyperactivity that occurs near the Aβ deposition. We suggest the differential and gradual impairment in two major modalities of episodic memory under Aβ pathology

    Lipid flippase dysfunction as a therapeutic target for endosomal anomalies in Alzheimer's disease

    Get PDF
    Endosomal anomalies because of vesicular traffic impairment have been indicated as an early pathology of Alzheimer'vertical bar disease (AD). However, the mechanisms and therapeutic targets remain unclear. We previously reported thatbCTF, one of the pathogenic metabolites of APP, interacts with TMEM30A. TMEM30A constitutes a lipid flippase with P4-ATPase and regulates vesicular trafficking through the asymmetric distribution of phospholipids. Therefore, the alteration of lipid flippase activity in AD pathology has got attention. Herein, we showed that the interaction between beta CTF and TMEM30A suppresses the physiological formation and activity of lipid flippase in AD model cells, A7, and App(NLG-F/NLG-F) model mice. Furthermore, the T-RAP peptide derived from the beta CTF binding site of TMEM30A improved endosomal anomalies, which could be a result of the restored lipid flippase activity. Our results provide insights into the mechanisms of vesicular traffic impairment and suggest a therapeutic target for AD

    Plaque associated microglia hyper-secrete extracellular vesicles and accelerate tau propagation in a humanized APP mouse model

    Get PDF
    Abstract Background Recent studies suggest that microglia contribute to tau pathology progression in Alzheimer’s disease. Amyloid plaque accumulation transforms microglia, the primary innate immune cells in the brain, into neurodegenerative microglia (MGnD), which exhibit enhanced phagocytosis of plaques, apoptotic neurons and dystrophic neurites containing aggregated and phosphorylated tau (p-tau). It remains unclear how microglia promote disease progression while actively phagocytosing pathological proteins, therefore ameliorating pathology. Methods Adeno-associated virus expressing P301L tau mutant (AAV-P301L-tau) was stereotaxically injected into the medial entorhinal cortex (MEC) in C57BL/6 (WT) and humanized APP mutant knock-in homozygote (AppNL-G-F) mice at 5 months of age. Mice were fed either chow containing a colony stimulating factor-1 receptor inhibitor (PLX5622) or control chow from 4 to 6 months of age to test the effect of microglia depletion. Animals were tested at 6 months of age for immunofluorescence, biochemistry, and FACS of microglia. In order to monitor microglial extracellular vesicle secretion in vivo, a novel lentiviral EV reporter system was engineered to express mEmerald-CD9 (mE-CD9) specifically in microglia, which was injected into the same region of MEC. Results Expressing P301L tau mutant in the MEC induced tau propagation to the granule cell layer of the hippocampal dentate gyrus, which was significantly exacerbated in AppNL-G-F mice compared to WT control mice. Administration of PLX5622 depleted nearly all microglia in mouse brains and dramatically reduced propagation of p-tau in WT and to a greater extent in AppNL-G-F mice, although it increased plaque burden and plaque-associated p-tau+ dystrophic neurites. Plaque-associated MGnD microglia strongly expressed an EV marker, tumor susceptibility gene 101, indicative of heightened synthesis of EVs. Intracortical injection of mE-CD9 lentivirus successfully induced microglia-specific expression of mE-CD9+ EV particles, which were significantly enhanced in Mac2+ MGnD microglia compared to Mac2− homeostatic microglia. Finally, consecutive intracortical injection of mE-CD9 lentivirus and AAV-P301L-tau into AppNL-G-F mice revealed encapsulation of p-tau in microglia-specific mE-CD9+ EVs as determined by super-resolution microscopy and immuno-electron microscopy. Discussion Our findings suggest that MGnD microglia hyper-secrete p-tau+ EVs while compacting Aβ plaques and clearing NP tau, which we propose as a novel mechanistic link between amyloid plaque deposition and exacerbation of tau propagation in AppNL-G-F mice
    corecore