231 research outputs found

    Presubiculum principal cells are preserved from degeneration in knock-in APP/TAU mouse models of Alzheimer’s disease

    Get PDF
    The presubiculum (PRS) is an integral component of the perforant pathway that has recently been recognised as a relatively unscathed region in clinical Alzheimer’s disease (AD), despite neighbouring components of the perforant pathway, CA1 and the entorhinal cortex, responsible for formation of episodic memory and storage, showing severe hallmarks of AD including, amyloid-beta (Aβ) plaques, tau tangles and marked gliosis. However, the question remains whether this anatomical resilience translates into functional resilience of the PRS neurons. Using neuroanatomy combined with whole-cell electrophysiological recordings, we investigated whether the unique spatial profile of the PRS was replicable in two knock-in mouse models of AD, APPNL-F/NL-F, and APPNL-F/MAPTHTAU and whether the intrinsic properties and morphological integrity of the PRS principal neurons was maintained compared to the lateral entorhinal cortex (LEC) and hippocampal CA1 principal cells. Our data revealed an age-dependent Aβ and tau pathology with neuroinflammation in the LEC and CA1, but a presence of fleece-like Aβ deposits with an absence of tau tangles and cellular markers of gliosis in the PRS of the mouse models at 11–16 and 18–22 months. These observations were consistent in human post-mortem AD tissue. This spatial profile also correlated with functional resilience of strong burst firing PRS pyramidal cells that showed unaltered sub- and suprathreshold intrinsic biophysical membrane properties and gross morphology in the AD models that were similar to the properties of pyramidal cells recorded in age-matched wild-type mice (11–14 months). This was in contrast to the LEC and CA1 principal cells which showed altered subthreshold intrinsic properties such as a higher input resistance, longer membrane time constants and hyperexcitability in response to suprathreshold stimulation that correlated with atrophied dendrites in both AD models. In conclusion, our data show for the first time that the unique anatomical profile of the PRS constitutes a diffuse AD pathology that is correlated with the preservation of principal pyramidal cell intrinsic biophysical and morphological properties despite alteration of LEC and CA1 pyramidal cells in two distinct genetic models of AD. Understanding the underlying mechanisms of this resilience could be beneficial in preventing the spread of disease pathology before cognitive deficits are precipitated in AD

    Astrocytes deficient in circadian clock gene Bmal1 show enhanced activation responses to amyloid-beta pathology without changing plaque burden

    Get PDF
    An emerging link between circadian clock function and neurodegeneration has indicated a critical role for the molecular clock in brain health. We previously reported that deletion of the core circadian clock gene Bmal1 abrogates clock function and induces cell-autonomous astrocyte activation. Regulation of astrocyte activation has important implications for protein aggregation, inflammation, and neuronal survival in neurodegenerative conditions such as Alzheimer\u27s disease (AD). Here, we investigated how astrocyte activation induced by Bmal1 deletion regulates astrocyte gene expression, amyloid-beta (Aβ) plaque-associated activation, and plaque deposition. To address these questions, we crossed astrocyte-specific Bmal1 knockout mice (Aldh1l1-Cr

    Dominant and differential deposition of distinct β-amyloid peptide species, AβN3(pE), in senile plaques

    Get PDF
    AbstractWe analyzed an amino-terminal modification of β-amyloid (Aβ) peptide in brain, using anti-Aβ antibodies that distinguish distinct molecular species. Examination of cortical sections from 28 aged individuals with a wide range in senile plaque density revealed that a molecular species distinct from the standard Aβ is deposited in the brain in a dominant and differential manner. This modified Aβ peptide (AβN3(pE)) starts at the 3rd amino-terminal residue of the standard Aβ, glutamate, converted to pyroglutamate through intramolecular dehydration. Because plaques composed of AβN3(pE) are present in equivalent or greater densities than those composed of standard Aβ bearing the first aminoterminal residue (AβN1) and because deposition of the former species appears to precede deposition of the latter, as confirmed with specimens from Down's syndrome patients, the processes involved in AβN3(pE) production and retention may play an early and critical role in senile plaque formation

    Amyloid Beta Annular Protofibrils in Cell Processes and Synapses Accumulate with Aging and Alzheimer-Associated Genetic Modification

    Get PDF
    Amyloid β (Aβ) annular protofibrils (APFs) have been described where the structure is related to that of β barrel pore-forming bacterial toxins and exhibits cellular toxicity. To investigate the relationship of Aβ APFs to disease and their ultrastructural localization in brain tissue, we conducted a pre-embedding immunoelectron microscopic study using anti-annular protofibril antiserum. We examined brain tissues of young- and old-aged amyloid precursor protein transgenic mice (APP23), neprilysin knockout APP23 mice, and nontransgenic littermates. αAPF-immunoreactions tended to be found (1) on plasma membranes and vesicles inside of cell processes, but not on amyloid fibrils, (2) with higher density due to aging, APP transgene, and neprilysin deficiency, and (3) with higher positive rate at synaptic compartments in aged APP23, especially in neprilysin knockout APP23 mice. These findings imply that APFs are distinct from amyloid fibrils, interact with biological membranes, and might be related to synaptic dysfunction in Alzheimer model mouse brains

    Impairment in novelty-promoted memory via behavioral tagging and capture before apparent memory loss in a knock-in model of Alzheimer’s disease

    Get PDF
    Alzheimer’s disease (AD) is associated with cognitive impairments and age-dependent memory deficits which have been studied using genetic models of AD. Whether the processes for modulating memory persistence are more vulnerable to the influence of amyloid pathology than the encoding and consolidation of the memory remains unclear. Here, we investigated whether early amyloid pathology would affect peri-learning novelty in promoting memory, through a process called behavioral tagging and capture (BTC). App(NL-G-F/NL-G-F) mice and wild-type littermates were trained in an appetitive delayed matching-to-place (ADMP) task which allows for the assessment of peri-learning novelty in facilitating memory. The results show that novelty enabled intermediate-term memory in wild-type mice, but not in App(NL-G-F/NL-G-F) mice in adulthood. This effect preceded spatial memory impairment in the ADMP task seen in middle age. Other memory tests in the Barnes maze, Y-maze, novel object or location recognition tasks remained intact. Together, memory modulation through BTC is impaired before apparent deficits in learning and memory. Relevant biological mechanisms underlying BTC and the implication in AD are discussed

    Comprehensive behavioral phenotyping of calpastatin-knockout mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Calpastatin is an endogenous inhibitor of calpain, intracellular calcium-activated protease. It has been suggested to be involved in molecular mechanisms of long-term plasticity and excitotoxic pathways. However, functions of calpastatin in vivo are still largely unknown. To examine the physiological roles of calpastatin, we subjected calpastatin-knockout mice to a comprehensive behavioral test battery.</p> <p>Results</p> <p>Calpastatin-knockout mice showed decreased locomotor activity under stressful environments, and decreased acoustic startle response, but we observed no significant change in hippocampus-dependent memory function.</p> <p>Conclusion</p> <p>These results suggest that calpastatin is likely to be more closely associated with affective rather than cognitive aspects of brain function.</p

    Транспортный комплекс в экономике России и его реформирование (на примере ООО ТЦП - Томский центр перевозок)

    Get PDF
    В данной работе была затронута тема о специфике работы транспортной логистики, проанализированы данные компании ООО "ТЦП", выявлены основные проблемы и проведена аналитика деятельности компанииIn this work, the topic of the specifics of the transport logistics analyzed the data of the company LLC TSP identified the main problems and carried out Analytics of the compan

    Assessing Sex-Specific Circadian, Metabolic, and Cognitive Phenotypes in the AβPP/PS1 and APPNL-F/NL-F Models of Alzheimer\u27s Disease.

    Get PDF
    BACKGROUND: Circadian disruption has long been recognized as a symptom of Alzheimer\u27s disease (AD); however, emerging data suggests that circadian dysfunction occurs early on in disease development, potentially preceding any noticeable cognitive deficits. OBJECTIVE: This study compares the onset of AD in male and female wild type (C57BL6/J), transgenic (AβPP/PS1), and knock-in (APPNL-F/NL-F) AD mouse models from the period of plaque initiation (6 months) through 12 months. METHODS: Rhythmic daily activity patterns, glucose sensitivity, cognitive function (Morris water maze, MWM), and AD pathology (plaques formation) were assessed. A comparison was made across sexes. RESULTS: Sex-dependent hyperactivity in AβPP/PS1 mice was observed. In comparison to C57BL/6J animals, 6-month-old male AβPP/PS1 demonstrated nighttime hyperactivity, as did 12-month-old females. Female AβPP/PS1 animals performed significantly worse on a MWM task than AβPP/PS1 males at 12 months and trended toward increased plaque pathology. APPNL-F/NL-F 12-month-old males performed significantly worse on the MWM task compared to 12-month-old females. Significantly greater plaque pathology occurred in AβPP/PS1 animals as compared to APPNL-F/NL-F animals. Female AβPP/PS1 animals performed significantly worse than APPNL-F/NL-F animals in spatial learning and memory tasks, though this was reversed in males. CONCLUSION: Taken together, this study provides novel insights into baseline sex differences, as well as characterizes baseline diurnal activity variations, in the AβPP/PS1 and APPNL-F/NL-F AD mouse models

    Activation of calpain-1 in human carotid artery atherosclerotic lesions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In a previous study, we observed that oxidized low-density lipoprotein-induced death of endothelial cells was calpain-1-dependent. The purpose of the present paper was to study the possible activation of calpain in human carotid plaques, and to compare calpain activity in the plaques from symptomatic patients with those obtained from patients without symptoms.</p> <p>Methods</p> <p>Human atherosclerotic carotid plaques (n = 29, 12 associated with symptoms) were removed by endarterectomy. Calpain activity and apoptosis were detected by performing immunohistochemical analysis and TUNEL assay on human carotid plaque sections. An antibody specific for calpain-proteolyzed α-fodrin was used on western blots.</p> <p>Results</p> <p>We found that calpain was activated in all the plaques and calpain activity colocalized with apoptotic cell death. Our observation of autoproteolytic cleavage of the 80 kDa subunit of calpain-1 provided further evidence for enzyme activity in the plaque samples. When calpain activity was quantified, we found that plaques from symptomatic patients displayed significantly lower calpain activity compared with asymptomatic plaques.</p> <p>Conclusion</p> <p>These novel results suggest that calpain-1 is commonly active in carotid artery atherosclerotic plaques, and that calpain activity is colocalized with cell death and inversely associated with symptoms.</p

    Modality-Specific Impairment of Hippocampal CA1 Neurons of Alzheimer’s Disease Model Mice

    Get PDF
    Impairment of episodic memory, a class of memory for spatiotemporal context of an event, is an early symptom of Alzheimer's disease. Both spatial and temporal information are encoded and represented in the hippocampal neurons, but how these representations are impaired under amyloid β (Aβ) pathology remains elusive. We performed chronic imaging of the hippocampus in awake male amyloid precursor protein (App) knock-in mice behaving in a virtual reality environment to simultaneously monitor spatiotemporal representations and the progression of Aβ depositions. We found that temporal representation is preserved, while spatial representation is significantly impaired in the App knock-in mice. This is due to the overall reduction of active place cells but not time cells, and compensatory hyperactivation of remaining place cells near Aβ aggregates. These results indicate the differential impact of Aβ aggregates on two major modalities of episodic memory, suggesting different mechanisms for forming and maintaining these two representations in hippocampus.SIGNIFICANCE STATEMENT:Spatiotemporal memory impairments are common at the early stage of Alzheimer's disease patients. We demonstrate the different impairment patterns of place and time cells in the dorsal hippocampus of head-fixed App knock-in mouse by in vivo two-photon calcium imaging over months under the virtual reality spatiotemporal tasks. These results highlight that place cells were preferentially and gradually damaged nearby Aβ aggregates, while time cells were less vulnerable. We further show these impairments were due to neuronal hyperactivity that occurs near the Aβ deposition. We suggest the differential and gradual impairment in two major modalities of episodic memory under Aβ pathology
    corecore