4 research outputs found

    Cytotoxicity of extract of Malaysian Mitragyna Speciosa Korth and its dominant Alkaloid Mitragynine

    No full text
    Mitragyna speciosa Korth (Kratom), a herb of the Rubiaceae family is indigenous in southeast Asia mainly in Malaysia and Thailand. It is used as an opium substitute and has been increasingly abused by drug addicts in Malaysia. Recently, the potent analgesic effect of plant extract and its dominant alkaloid mitragynine (MIT) were confirmed in vivo and in vitro. MIT acted primarily on μ- and δ-opioid receptors, suggesting that MIT or similar compounds could be promising alternatives for future pain management treatments. However the potential cytotoxicity of this plant is unknown. Therefore, the cytotoxicity of methanol-chloroform extract (MSE) and MIT on human cell lines (HepG2, HEK 293, MCL-5, cHol and SH-SY5Y cells) has been examined. MSE appeared to exhibit dose-dependant inhibition of cell proliferation in all cell lines examined, at concentration > 100 μg/ml with substantial cell death at 1000 μg/ml. SH-SY5Y was the most sensitive cell line examined. MIT showed a similar response. Clonogenicity assay was performed to assess the longer- term effects of MSE and MIT. The colony forming ability of HEK 293 and SH-SY5Y cells was inhibited in a dose-dependant manner. Involvement of metabolism in cytotoxicity was further assessed by clonogenicity assay using rat liver S9 (induced by Arochlor 1254); toxicity increased 10-fold in both cell lines. To determine if cytotoxicity was accompanied by DNA damage, the Mouse lymphoma tk gene mutation assay was used. The results were negative for both MSE and MIT. Studies on the involvement of metabolism in cytotoxicity of MSE and MIT were performed using MCL-5 and it appeared that CYP 2E1 is involved in activation of cytotoxicity. Studies with opioid antagonists were performed using SH-SY5Y cells treated with MSE and MIT. Naloxone (μ and δ receptor antagonists), naltrindole (δ receptor antagonist) and cyprodime hydrobromide (μ receptor antagonist) confirmed that MSE cytotoxicity was associated with μ and δ receptor while MIT mainly acted on μ receptor. Studies on mechanism of MSE and MIT cytotoxicity showed that cell death observed at high dose was preceded by cell cycle arrest, however MSE cell arrest was independent of p53 and p21 while MIT showed opposite result. Studies have been undertaken to examine the nature of this cell death. Morphological examinations showed that cell death induced by MSE was cell type dependant, in which SH-SY5Y cells appeared to die via apoptosis-like cell death while HEK 293 and MCL-5 cells predominantly via necrosis. Biochemical assessments confirmed that MSE induced cell death independent of p53 or caspases pathway while MIT cell death appeared to be associated with p53 and caspases pathway. The involvement of reactive oxygen species (ROS) generation in MSE and MIT mediating cell death was performed using SH-SY5Y cells. The results appeared negative for both MSE and MIT treated cells. Collectively, the findings of these studies suggest that MSE and its dominant alkaloid MIT produced cytotoxicity effects at high dose. Thus, the consumption of Mitragyna speciosa Korth leaves may pose harmful effects to users if taken at high dose and the evidence for involvement of CYP 2E1 in increasing the MSE cytotoxicity suggests that caution may be required if the leaves are to be taken with CYP 2E1 inducers

    The cellular toxicology of mitragynine, the dominant alkaloid of the narcotic-like herb, Mitragyna speciosa Korth

    Get PDF
    Mitragyna speciosa Korth (Kratom), a herb of the Rubiaceae family is indigenous to southeast Asia. The plant and its dominant alkaloid mitragynine (MIT) are narcotic/analgesic and illicit consumption is widespread in Asia; the toxicological consequences of consumption are poorly documented. We determined cytotoxicity of MIT on human cell lines and report dose and time-dependent stimulation and inhibition of proliferation. Since MIT has powerful opiate-like activity, we focussed on human neuronal SH-SY5Y cell line and found the colony forming ability of cells treated with MIT showed a dose-dependent trend for reduced survival. Studies using metabolically competent MCL-5 cells and chemical inhibitors indicated that CYP 2E1 and 2A6 were involved in the cytotoxicity. Cytotoxicity was preceded by cell cycle arrest mainly at G1 and S phase. To assess whether arrest was due to DNA damage or mutation, we examined genotoxic potential using the L5178 TK +/− mouse lymphoma assay and found that MIT was not genotoxic at the TK locus, even at doses that were highly cytotoxic. To investigate mechanisms of MIT cytotoxicity, we used flow cytometry and annexin V with 7-amino-actinomycin D staining and show apoptosis and necrotic activity. Apoptosis was further supported as MIT rapidly induced the activity of executioner caspases 3/7. However, cytotoxicity of MIT was partially reduced by inclusion of the opioid receptor antagonist naloxone, a μ and δ opioid receptor antagonist, suggesting that cytotoxicity depends in part on opioid signalling, consistent with the known toxicity of other opiates. Based on consumption of 20 leaves per day of Mitragyna speciosa, we estimated daily human exposure to MIT to be about 17 mg MIT for regular consumers, potentially giving plasma concentrations in of 10−9 to 10 −7 M. Importantly, fatalities after kratom consumption have been reported to occur in individuals with blood mitragynine concentrations of between 0.45–1.0 μM, substantially lower than the threshold of toxicity predicted from this in vitro report. Clearly the implications of these findings to humans consuming Mitragyna speciosa leaves will require further study, but individuals taking large quantities of these opiate-like materials may be at risk, especially those who have a high CYP2E1 activity, such as heavy alcohol users

    Cytotoxicity of extract of Malaysian Mitragyna speciosa Korth and its dominant alkaloid mitragynine

    No full text
    Mitragyna speciosa Korth (Kratom), a herb of the Rubiaceae family is indigenous in southeast Asia mainly in Malaysia and Thailand. It is used as an opium substitute and has been increasingly abused by drug addicts in Malaysia. Recently, the potent analgesic effect of plant extract and its dominant alkaloid mitragynine (MIT) were confirmed in vivo and in vitro. MIT acted primarily on μ- and δ-opioid receptors, suggesting that MIT or similar compounds could be promising alternatives for future pain management treatments. However the potential cytotoxicity of this plant is unknown. Therefore, the cytotoxicity of methanol-chloroform extract (MSE) and MIT on human cell lines (HepG2, HEK 293, MCL-5, cHol and SH-SY5Y cells) has been examined. MSE appeared to exhibit dose-dependant inhibition of cell proliferation in all cell lines examined, at concentration > 100 μg/ml with substantial cell death at 1000 μg/ml. SH-SY5Y was the most sensitive cell line examined. MIT showed a similar response. Clonogenicity assay was performed to assess the longer-term effects of MSE and MIT. The colony forming ability of HEK 293 and SH-SY5Y cells was inhibited in a dose-dependant manner. Involvement of metabolism in cytotoxicity was further assessed by clonogenicity assay using rat liver S9 (induced by Arochlor 1254); toxicity increased 10-fold in both cell lines. To determine if cytotoxicity was accompanied by DNA damage, the Mouse lymphoma tk gene mutation assay was used. The results were negative for both MSE and MIT. Studies on the involvement of metabolism in cytotoxicity of MSE and MIT were performed using MCL-5 and it appeared that CYP 2E1 is involved in activation of cytotoxicity. Studies with opioid antagonists were performed using SH-SY5Y cells treated with MSE and MIT. Naloxone (μ and δ receptor antagonists), naltrindole (δ receptor antagonist) and cyprodime hydrobromide (μ receptor antagonist) confirmed that MSE cytotoxicity was associated with μ and δ receptor while MIT mainly acted on μ receptor. Studies on mechanism of MSE and MIT cytotoxicity showed that cell death observed at high dose was preceded by cell cycle arrest, however MSE cell arrest was independent of p53 and p21 while MIT showed opposite result. Studies have been undertaken to examine the nature of this cell death. Morphological examinations showed that cell death induced by MSE was cell type dependant, in which SH-SY5Y cells appeared to die via apoptosis-like cell death while HEK 293 and MCL-5 cells predominantly via necrosis. Biochemical assessments confirmed that MSE induced cell death independent of p53 or caspases pathway while MIT cell death appeared to be associated with p53 and caspases pathway. The involvement of reactive oxygen species (ROS) generation in MSE and MIT mediating cell death was performed using SH-SY5Y cells. The results appeared negative for both MSE and MIT treated cells. Collectively, the findings of these studies suggest that MSE and its dominant alkaloid MIT produced cytotoxicity effects at high dose. Thus, the consumption of Mitragyna speciosa Korth leaves may pose harmful effects to users if taken at high dose and the evidence for involvement of CYP 2E1 in increasing the MSE cytotoxicity suggests that caution may be required if the leaves are to be taken with CYP 2E1 inducers.EThOS - Electronic Theses Online ServiceMinistry of Higher Education Malaysia, International Islamic University MalaysiaGBUnited Kingdo

    Investigation on the mass sensitivity of quartz crystal microbalance gas sensor using finite element simulation

    No full text
    The increasing global trends in healthcare priorities towards improving the effectiveness of diagnostic procedure by utilizing a non-invasive method which is breath analysis. This will benefit in increasing treatment efficiency and also reducing healthcare costs. Breath is a simple technique where the sample are easily obtained and can be provided immediately. The most popular method that had been used in hospital are urine and blood. Contradict with breath, urine and blood take too much time to analyse the disease and a painful process. The detection technique of breath analysis is done by using electroacoustic wave sensor from piezoelectric substrate. This acoustic wave sensor has been used to detect the changes in the frequency where it will be used to detect the disease. Breath analysis is a technique where it uses an electronic nose (E-nose) as a device. E-nose consist of Quartz Crystal Microbalance (QCM) sensor in order to differentiate odor in human breath. QCM is a sensitive weighing device which have a high efficiency. AT-cut quartz was chosen as the piezoelectric material and aluminum as the electrode. The objective of this paper is to design and simulate a QCM sensor for breath analysis application. Other than that, it also to determine the important key parameters that influence the performance of breath analysis which is sensitivity and resonant frequency. QCM sensor is being simulate by using COMSOL Multiphysics software. This is to evaluate the behavior of QCM sensor in terms of Eigen frequency analysis. The simulated QCM sensor with quartz radius of 166 um resonates at 8.871 MHz. The sensitivity of the sensor is 0.167 MHz/ng after exposed to acetone gas which act as the breath marker for detection of diseases in exhaled breath.Hence, the proposed design can be used as a non-invasive approach for early detection of disease through breath analysis
    corecore