30 research outputs found

    Effect of Piezoelectric Filed on the Optical Properties of (311) A and (311) B Oriented InAlAs/InP Heterostructures

    Get PDF
    InAlAs alloy was grown by MOCVD on an InP (311) substrate with different polarities. Measurements of photoluminescence (PL) and photoreflectance (PR) were performed to study the impact of the V/III flux ratio. It is discovered that the PL line was shifted to a greater energy side with the increasing excitation power density, and no saturation was observed of its related PL intensity. It is a fingerprint of type II transition emission. However, the recombination of the type II interface showed a powerful dependence on AsH3 overpressure and substrate polarity. In fact, we have noted an opposite behavior of type II energy transition shift from A to B polarity substrate in respect to V/III ratio variation. PR signals corresponding to Franz-Keldysh Oscillation (FKO) were observed. The analysis of their period has allowed one to assess the value of the PZ field in the samples. PL-luminescence measurements were performed out as a function of temperature. PL peak energy, PL intensity, and half maximum full width show anomalous behaviors. Indicating the existence of localized carriers, they were ascribed to the energy potential modulation associated with the indium cluster formation and PZ field

    Experimental and Numerical Study of the Warm Incremental Forming Process of Titanium Alloy Sheet

    No full text
    Le formage incrémental est un procédé de mise en forme flexible, avec des outillages peu couteux. Il est adapté pour la réalisation de pièces à usage unique comme des prothèses ou implants personnalisés en titane. Mais les efforts de formage importants avec le titane limitent les possibilités de géométries. Une solution pour diminuer les efforts de formage consiste à réaliser ce formage à chaud.L’objectif de cette thèse était d’étudier numériquement et expérimentalement le formage incrémental à chaud de pièces en titane. Un nouveau dispositif expérimental à chaud basé sur l’utilisation de cartouches chauffantes est proposé. Une campagne d’essais expérimentaux à chaud est menée afin d’étudier l’effet de la température et de différents paramètres du procédé pour une pièce tronconique en titane (Ti-6Al-4V). On montre qu’à haute température les efforts de formage sont plus faibles, la formabilité est améliorée. A 450°C, on obtient un angle limite de formage de 57°. La simulation numérique du formage incrémental est effectuée avec ABAQUS à température ambiante puis à chaud. On montre l’impact de certains paramètres du procédé sur l’effort axial et l’épaisseur finale. Les valeurs optimums de ces paramètres sont déterminées à partir de plans d’expériences et des surfaces de réponse. La comparaison des résultats numériques et expérimentaux à chaud permet de valider le modèle numérique. On s’intéresse ensuite au formage incrémental à chaud d’une prothèse de crâne humain en titane en utilisant une approche d’ingénierie inverseThe incremental forming process is a flexible forming process, with low cost tooling. It is perfectly suited for single use products as customized titanium implants or prosthesis. But the important forming forces with titanium limit the geometries to realize. One of the solutions consists in performing this process at hot temperature.The objective of this work is to study numerically and experimentally the warm incremental forming process of titanium sheets. A new setup for the warm incremental forming process is proposed. It is based on the use of heating cartridges. A hot experimental test campaign with Ti-6Al-4V titanium alloy sheets is conducted in order to study the impact of the temperature and process parameters on the axial force and thickness distribution for a truncated cone. It is shown that the forming forces are lower at hot temperature and the formability is improved. For a temperature of 450°C, a forming limit angle of 57° is obtained.Numerical simulations with Abaqus of the incremental forming process are performed at room temperature and hot temperature. We show the impact of the punch diameter and the axial step size on the axial force and thickness. The optimum values of these parameters are determined by using an experimental design and response surfaces. The comparison between results obtained numerically and experimentally allows to validate the numerical model. We are then interested in the warm incremental forming process of a human skull prosthesis. A reverse engineering approach is use

    Accuracy and Sheet Thinning Improvement of Deep Titanium Alloy Part with Warm Incremental Sheet-Forming Process

    No full text
    Incremental forming is a recent forming process that allows a sheet to be locally deformed with a hemispherical tool in order to gradually shape it. Despite good lubrication between the sheet and the tip of the smooth hemisphere tool, ductility often occurs, limiting the formability of titanium alloys due to the geometrical inaccuracy of the parts and the inability to form parts with a large depth and wall angle. Several technical solutions are proposed in the literature to increase the working temperature, allowing improvement in the titanium alloys’ formability and reducing the sheet thinning, plastic instability, and failure localization. An experimental procedure and numerical simulation were performed in this study to improve the warm single-point incremental sheet forming of a deep truncated cone in Ti-6Al-4V titanium alloy based on the use of heating cartridges. The effect of the depth part (two experiments with a truncated cone having a depth of 40 and 60 mm) at hot temperature (440 °C) on the thickness distribution and sheet shape accuracy are performed. Results show that the formability is significantly improved with the heating to produce a deep part. Small errors are observed between experimental and theoretical profiles. Moreover, errors between experimental and numerical displacements are less than 6%, which shows that the Finite Element (FE) model gives accurate predictions for titanium alloy deep truncated cones

    Etude expérimentale et numérique du procédé de formage incrémental à chaud de tôles en titane

    No full text
    The incremental forming process is a flexible forming process, with low cost tooling. It is perfectly suited for single use products as customized titanium implants or prosthesis. But the important forming forces with titanium limit the geometries to realize. One of the solutions consists in performing this process at hot temperature.The objective of this work is to study numerically and experimentally the warm incremental forming process of titanium sheets. A new setup for the warm incremental forming process is proposed. It is based on the use of heating cartridges. A hot experimental test campaign with Ti-6Al-4V titanium alloy sheets is conducted in order to study the impact of the temperature and process parameters on the axial force and thickness distribution for a truncated cone. It is shown that the forming forces are lower at hot temperature and the formability is improved. For a temperature of 450°C, a forming limit angle of 57° is obtained.Numerical simulations with Abaqus of the incremental forming process are performed at room temperature and hot temperature. We show the impact of the punch diameter and the axial step size on the axial force and thickness. The optimum values of these parameters are determined by using an experimental design and response surfaces. The comparison between results obtained numerically and experimentally allows to validate the numerical model. We are then interested in the warm incremental forming process of a human skull prosthesis. A reverse engineering approach is usedLe formage incrémental est un procédé de mise en forme flexible, avec des outillages peu couteux. Il est adapté pour la réalisation de pièces à usage unique comme des prothèses ou implants personnalisés en titane. Mais les efforts de formage importants avec le titane limitent les possibilités de géométries. Une solution pour diminuer les efforts de formage consiste à réaliser ce formage à chaud.L’objectif de cette thèse était d’étudier numériquement et expérimentalement le formage incrémental à chaud de pièces en titane. Un nouveau dispositif expérimental à chaud basé sur l’utilisation de cartouches chauffantes est proposé. Une campagne d’essais expérimentaux à chaud est menée afin d’étudier l’effet de la température et de différents paramètres du procédé pour une pièce tronconique en titane (Ti-6Al-4V). On montre qu’à haute température les efforts de formage sont plus faibles, la formabilité est améliorée. A 450°C, on obtient un angle limite de formage de 57°. La simulation numérique du formage incrémental est effectuée avec ABAQUS à température ambiante puis à chaud. On montre l’impact de certains paramètres du procédé sur l’effort axial et l’épaisseur finale. Les valeurs optimums de ces paramètres sont déterminées à partir de plans d’expériences et des surfaces de réponse. La comparaison des résultats numériques et expérimentaux à chaud permet de valider le modèle numérique. On s’intéresse ensuite au formage incrémental à chaud d’une prothèse de crâne humain en titane en utilisant une approche d’ingénierie invers

    Optimization of the single point incremental forming process for titanium sheets by using response surface

    No full text
    The single point incremental forming process is well-known to be perfectly suited for prototyping and small series. One of its fields of applicability is the medicine area for the forming of titanium prostheses or titanium medical implants. However this process is not yet very industrialized, mainly due its geometrical inaccuracy, its not homogeneous thickness distribution& Moreover considerable forces can occur. They must be controlled in order to preserve the tooling. In this paper, a numerical approach is proposed in order to minimize the maximum force achieved during the incremental forming of titanium sheets and to maximize the minimal thickness. A surface response methodology is used to find the optimal values of two input parameters of the process, the punch diameter and the vertical step size of the tool path

    Optimization of Single Point Incremental Forming process using response surface method and Evolution Strategy

    No full text
    International audienceThe single point incremental forming process (ISF) is an emerging forming technique with promising industrial applications. Inspired by previous works about optimization with evolutionary algorithms , the aim of this work was to develop a numerical toolbox to optimize the thinning rate. The approach proposed in this paper is based on a parametrization of the tool path and the use of response surface method combined to evolution strategies

    Optimization of Single Point Incremental Forming process using response surface method and Evolution Strategy

    No full text
    International audienceThe single point incremental forming process (ISF) is an emerging forming technique with promising industrial applications. Inspired by previous works about optimization with evolutionary algorithms , the aim of this work was to develop a numerical toolbox to optimize the thinning rate. The approach proposed in this paper is based on a parametrization of the tool path and the use of response surface method combined to evolution strategies
    corecore