4 research outputs found

    Anthromes dispaying evidence of weekly cycles in active fire data cover 70% of the global land surface

    Get PDF
    Across the globe, human activities have been gaining importance relatively to climate and ecology as the main controls on fire regimes and consequently human activity became an important driver of the frequency, extent and intensity of vegetation burning worldwide. Our objective in the present study is to look for weekly cycles in vegetation fire activity at global scale as evidence of human agency, relying on the original MODIS active fire detections at 1 km spatial resolution (MCD14ML) and using novel statistical methodologies to detect significant periodicities in time series data. We tested the hypotheses that global fire activity displays weekly cycles and that the weekday with the fewest fires is Sunday. We also assessed the effect of land use and land cover on weekly fire cycle significance by testing those hypotheses separately for the Villages, Settlements, Croplands, Rangelands, Seminatural, and Wildlands anthromes. Based on a preliminary data analysis of the daily global active fire counts periodogram, we developed an harmonic regression model for the mean function of daily fire activity and assumed a linear model for the de-seasonalized time series. For inference purposes, we used a Bayesian methodology and constructed a simultaneous 95% credible band for the mean function. The hypothesis of a Sunday weekly minimum was directly investigated by computing the probabilities that the mean functions of every weekday (Monday to Saturday) are inside the credible band corresponding to mean Sunday fire activity. Since these probabilities are small, there is statistical evidence of significantly fewer fires on Sunday than on the other days of the week. Cropland, rangeland, and seminatural anthromes, which cover 70% of the global land area and account for 94% of the active fires analysed, display weekly cycles in fire activity. Due to lower land management intensity and less strict control over fire size and duration, weekly cycles in Rangelands and Seminatural anthromes, which jointly account for 53.46% of all fires, although statistically significant are weaker than those detected in Croplandsinfo:eu-repo/semantics/publishedVersio

    An overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) project: aerosol–cloud–radiation interactions in the southeast Atlantic basin

    Get PDF
    This is the final version. Available on open access from the European Geosciences Union via the DOI in this recordData availability: All ORACLES data are accessible via the digital object identifiers (DOIs) provided under ORACLES Science Team (2020a–d) references: https://doi.org/10.5067/Suborbital/ORACLES/P3/2018_V2 (ORACLES Science Team, 2020a), https://doi.org/10.5067/Suborbital/ORACLES/P3/2017_V2 (ORACLES Science Team, 2020b), https://doi.org/10.5067/Suborbital/ORACLES/P3/2016_V2 (ORACLES Science Team, 2020c), and https://doi.org/10.5067/Suborbital/ORACLES/ER2/2016_V2 (ORACLES Science Team, 2020d). The only exceptions are noted as footnotes to Table B2.Southern Africa produces almost a third of the Earth's biomass burning (BB) aerosol particles, yet the fate of these particles and their influence on regional and global climate is poorly understood. ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) is a 5-year NASA EVS-2 (Earth Venture Suborbital-2) investigation with three intensive observation periods designed to study key atmospheric processes that determine the climate impacts of these aerosols. During the Southern Hemisphere winter and spring (June–October), aerosol particles reaching 3–5 km in altitude are transported westward over the southeast Atlantic, where they interact with one of the largest subtropical stratocumulus (Sc) cloud decks in the world. The representation of these interactions in climate models remains highly uncertain in part due to a scarcity of observational constraints on aerosol and cloud properties, as well as due to the parameterized treatment of physical processes. Three ORACLES deployments by the NASA P-3 aircraft in September 2016, August 2017, and October 2018 (totaling ∼350 science flight hours), augmented by the deployment of the NASA ER-2 aircraft for remote sensing in September 2016 (totaling ∼100 science flight hours), were intended to help fill this observational gap. ORACLES focuses on three fundamental science themes centered on the climate effects of African BB aerosols: (a) direct aerosol radiative effects, (b) effects of aerosol absorption on atmospheric circulation and clouds, and (c) aerosol–cloud microphysical interactions. This paper summarizes the ORACLES science objectives, describes the project implementation, provides an overview of the flights and measurements in each deployment, and highlights the integrative modeling efforts from cloud to global scales to address science objectives. Significant new findings on the vertical structure of BB aerosol physical and chemical properties, chemical aging, cloud condensation nuclei, rain and precipitation statistics, and aerosol indirect effects are emphasized, but their detailed descriptions are the subject of separate publications. The main purpose of this paper is to familiarize the broader scientific community with the ORACLES project and the dataset it produced.NAS

    An overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) project: aerosol-cloud-radiation interactions in the Southeast Atlantic basin

    No full text
    Southern Africa produces almost a third of the Earth’s biomass burning (BB) aerosol particles, yet the fate of these particles and their influence on regional and global climate is poorly understood. ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) is a five-year NASA EVS-2 (Earth Venture Suborbital-2) investigation with three Intensive Observation Periods designed to study key atmospheric processes that determine the climate impacts of these aerosols. During the Southern Hemisphere winter and spring (June-October), aerosol particles reaching 3–5 km in altitude are transported westward over the South-East Atlantic, where they interact with one of the largest subtropical stratocumulus subtropical stratocumulus (Sc) cloud decks in the world. The representation of these interactions in climate models remains highly uncertain in part due to a scarcity of observational constraints on aerosol and cloud properties, and due to the parameterized treatment of physical processes. Three ORACLES deployments by the NASA P-3 aircraft in September 2016, August 2017 and October 2018 (totaling ~350 science flight hours), augmented by the deployment of the NASA ER-2 aircraft for remote sensing in September 2016 (totaling ~100 science flight hours), were intended to help fill this observational gap. ORACLES focuses on three fundamental science questions centered on the climate effects of African BB aerosols: (a) direct aerosol radiative effects; (b) effects of aerosol absorption on atmospheric circulation and clouds; (c) aerosol-cloud microphysical interactions. This paper summarizes the ORACLES science objectives, describes the project implementation, provides an overview of the flights and measurements in each deployment, and highlights the integrative modeling efforts from cloud to global scales to address science objectives. Significant new findings on the vertical structure of BB aerosol physical and chemical properties, chemical aging, cloud condensation nuclei, rain and precipitation statistics, and aerosol indirect effects are emphasized, but their detailed descriptions are the subject of separate publications. The main purpose of this paper is to familiarize the broader scientific community with the ORACLES project and the data set it produced
    corecore