5 research outputs found

    Phytochemical composition and antioxidant activity of Lavandula dentate extracts

    Full text link
    Le but de ce travail consiste à étudier la composition des huiles essentielles et des polyphénols des racines, des tiges et des feuilles de la Lavande dentée et d’évaluer leurs potentialités antioxydantes. L’analyse et la quantification des huiles essentielles a montré que les feuilles sont les plus riches en huiles essentielles (0.89 mg/g MS) suivies par les tiges (0.68 mg/g MS) et enfin les racines (0,23 mg/g MS). Le constituant majeur de l’HE des racines est: le β-ocimène. D’autre part, le limonène représente le composé majeur de l’HE des tiges. Quant à l’HE des feuilles, elle est dominée par le camphre. D’autre part, nos résultats ont montré que les organes de la lavande montrent des teneurs en polyphénols totaux élevées et variables selon l’organe étudié. En effet, les extraits des racines sont caractérisés par le contenu le plus élevé en polyphénols. D’autre part, l’étude de l’activité antioxydante des extraits des différents organes a indiqué que les extraits de la racine sont particulièrement les plus actifs et que leur analyse par RP-HPLC a montré que ces derniers sont riches essentiellement en acide rosmarinique. Finalement, les extraits de la Lavande dentée et particulièrement ceux de la racine peuvent être considérés comme des sources alternatives d’antioxydants naturels puissants qui peuvent être utilisés en industrie agroalimentaire et pharmaceutique.In this study, Lavandula dentata organs (roots, stems and leaves) were investigated for their essential oils, total phenolics, flavonoids contents and antioxidant activities. Essential oil yields were 0.22% in roots, 0.68 % in stems and 0.89 % in flowers. Major components of the oils were β-ocimene, limonene and 1,8 cineol in roots, stems and leaves and flowers, respectively. In all organs, total phenolics content ranged from 42.57 to 16.17 mg gallic acid equivalents per gram of dry weight (mg GAE/g DW).The antioxidant activities of Lavandula dentata extracts obtained from the three organs were assessed using two tests (DPPH and reducing power). The root extract was strongly effective as DPPH radical scavenger and reducing agent. Thus, the identification of individual target polyphenolic compounds of roots was performed by RP-HPLC. The major phenolic compound detected in roots was rosmarinic acid. This activity was high enough for the plant to be a new and natural source of strongly antioxidant substances for use as natural additives in food and pharmaceutical industry

    Antioxidant and antimicrobial phenolic compounds from extracts of cultivated and wild-grown Tunisian Ruta chalepensis

    Get PDF
    The antioxidant and antibacterial activities of phenolic compounds from cultivated and wild Tunisian Ruta chalepensis L. leaves, stems, and flowers were assessed. The leaves and the flowers exhibited high but similar total polyphenol, flavonoid, and tannin content. Moreover, two organs showed strong, although not significantly different, total antioxidant activity, 2,2-diphenyl-1-picrylhydrazyl scavenging ability, and reducing power. Investigation of the phenolic composition showed that vanillic acid and coumarin were the major compounds in the two organs, with higher percentages in the cultivated organs than in the spontaneous organs. Furthermore, R. chalepensis extracts showed marked antibacterial properties against human pathogen strains, and the activity was organ- and origin-dependent. Spontaneous stems had the strongest activity against Pseudomonas aeruginosa. From these results, it was concluded that domestication of Ruta did not significantly affect its chemical composition and consequently the possibility of using R. chalpensis organs as a potential source of natural antioxidants and as an antimicrobial agent in the food industry

    Combined anti-AGEs and antioxidant activities of different solvent extracts of Solanum elaeagnifolium Cav. (Solanaceae) fruits during ripening and related to their phytochemical compositions

    Get PDF
    Oxidative stress and advanced glycation end products (AGEs) are known as key factors for the development of diabetic complications such as retinopathy, cataract as well as atherosclerosis and neurodegenerative diseases, including Alzheimer’s diseases. In this context, natural products have been previously identified as promising sources for antioxidant and anti-glycation compounds. The current study focuses on the evaluation of antioxidant and glycation inhibitory activities of different solvent extracts of Solanum elaeagnifolium Cav (Solanaceae) fruits at different ripening stages. The results showed that antioxidant and anti-AGEs activities were significantly influenced by solvents polarities and ripening stages of S. elaeagnifolium Cav. With one exception, methanolic extract of overripe S. elaeagnifolium Cav fruit showed important protective effects against cellular oxidative stress. The aqueous extract showed the highest ABTS+ scavenging ability. Principal component analysis showed that total phenolic and flavonoid contents correlated well with observed antioxidants and anti-glycation activities. These results bring attention to the possible use of S. elaeagnifolium Cav as a valuable source of bioactive compounds exhibiting antioxidant effects and potentially alleviating diabetic complications

    Volatiles, phenolic compounds, antioxidant and antibacterial properties of kohlrabi leaves

    No full text
    This work presents the volatile compounds and phenolic profile investigation of the leaves of Brassica oleracea L. growing in Tunisia, together with antioxidant and antibacterial properties. Volatile constituents were determined by HS-SPME coupled to GC/MS, and the results showed that α-pinene (31.6%) and limonene (16.9%) were the main volatiles. The phenolic profile was determined by HPLC analysis, the methanol extract revealed the presence of four hydroxycinnamic acids (chlorogenic, ferulic, p-coumaric and sinapic acids), two hydroxybenzoic acids (syringic and gallic acids), and four flavonoids (catechol, catechin hydrate, epigallocatechin and epicatechin 3-O-gallate). The methanol extract showed the best significantly antiradical activity by DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS ((2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) antioxidant assays, with EC50 of 0.32 and 0.45 mg/mL, respectively. For antibacterial activity, the methanol extract inhibits all the tested strains. It can be concluded that kohlrabi leaves are rich in bioactive compounds and are a potential source of natural antioxidants and antibacterials

    Comparative assessment of phytochemical profiles and antioxidant properties of Tunisian and Egyptian anise (<i>Pimpinella anisum</i> L.) seeds

    No full text
    <p>Anis (<i>Pimpinella anisum</i> L.) seeds obtained from two geographic origins Tunisia (TAS) and Egypt (EAS) were studied regarding their biochemical composition and the antioxidant potential of their extracts. The results showed that the highest value of oil was detected with TAS compared to that of EAS ones. Ten (10) fatty acids were identified for the two locations and petroselinic acid was the most prevalent in oil seeds and interestingly, TAS displayed a significantly higher level of this acid than EAS. Besides, TAS exhibited slightly higher essential oil yield than the Egyptian variety and that <i>trans</i>-anethole was the dominant for the two provenances. In both accessions, the highest total phenolic, flavonoid and tannin content was obtained with ethyl acetate fraction. Therefore, TAS exhibited higher chelating and reducing powers than EAS which may be due to a slightly different phenolic composition between the two accession seed extracts. The phenolic compositions of TAS and EAS revealed that ethyl acetate extracts showed higher proportions of naringin, chlorogenic acid and rosmarinic acid. However, ethanol extracts were richer in larcitrin, rosmarinic acid and cirsimartin. The overall results revealed that aniseeds might constitute a novel source of natural antioxidants and could be used as food additive.</p
    corecore