333 research outputs found

    Kinase profiling of liposarcomas using RNAi and drug screening assays identified druggable targets.

    Get PDF
    BackgroundLiposarcoma, the most common soft tissue tumor, is understudied cancer, and limited progress has been made in the treatment of metastatic disease. The Achilles heel of cancer often is their kinases that are excellent therapeutic targets. However, very limited knowledge exists of therapeutic critical kinase targets in liposarcoma that could be potentially used in disease management.MethodsLarge RNAi and small-molecule tyrosine kinase inhibitor screens were performed against the proliferative capacity of liposarcoma cell lines of different subtypes. Each small molecule inhibitor was either FDA approved or in a clinical trial.ResultsScreening assays identified several previously unrecognized targets including PTK2 and KIT in liposarcoma. We also observed that ponatinib, multi-targeted tyrosine kinase inhibitor, was the most effective drug with anti-growth effects against all cell lines. In vitro assays showed that ponatinib inhibited the clonogenic proliferation of liposarcoma, and this anti-growth effect was associated with apoptosis and cell cycle arrest at the G0/G1 phase as well as a decrease in the KIT signaling pathway. In addition, ponatinib inhibited in vivo growth of liposarcoma in a xenograft model.ConclusionsTwo large-scale kinase screenings identified novel liposarcoma targets and a FDA-approved inhibitor, ponatinib with clear anti-liposarcoma activity highlighting its potential therapy for treatment of this deadly tumor

    Effects of calorie restriction and IGF-1 receptor blockade on the progression of 22Rv1 prostate cancer xenografts.

    Get PDF
    Calorie restriction (CR) inhibits prostate cancer progression, partially through modulation of the IGF axis. IGF-1 receptor (IGF-1R) blockade reduces prostate cancer xenograft growth. We hypothesized that combining calorie restriction with IGF-1R blockade would have an additive effect on prostate cancer growth. Severe combined immunodeficient mice were subcutaneously injected with 22Rv1 cells and randomized to: (1) Ad libitum feeding/intraperitoneal saline (Ad-lib); (2) Ad-lib/20 mg/kg twice weekly, intraperitoneal ganitumab [anti-IGF-1R antibody (Ad-lib/Ab)]; (3) 40% calorie restriction/intraperitoneal saline (CR); (4) CR/ intraperitoneal ganitumab, (CR/Ab). CR and ganitumab treatment were initiated one week after tumor injection. Euthanasia occurred 19 days post treatment. Results showed that CR alone decreased final tumor weight, plasma insulin and IGF-1 levels, and increased apoptosis. Ganitumab therapy alone reduced tumor growth but had no effect on final tumor weight. The combination therapy (CR/Ab) further decreased final tumor weight and proliferation, increased apoptosis in comparison to the Ad-lib group, and lowered plasma insulin levels relative to the Ad-lib and Ad-lib/Ab groups. Tumor AKT activation directly correlated with plasma IGF-1 levels. In conclusion, whereas ganitumab therapy modestly affected 22Rv1 tumor growth, combining IGF-1R blockade with calorie restriction resulted in a significant decrease in final tumor weight and improved metabolic profile

    Antitumor activity of a pyrrole-imidazole polyamide

    Get PDF
    Many cancer therapeutics target DNA and exert cytotoxicity through the induction of DNA damage and inhibition of transcription. We report that a DNA minor groove binding hairpin pyrrole-imidazole (Py-Im) polyamide interferes with RNA polymerase II (RNAP2) activity in cell culture. Polyamide treatment activates p53 signaling in LNCaP prostate cancer cells without detectable DNA damage. Genome-wide mapping of RNAP2 binding shows reduction of occupancy, preferentially at transcription start sites, but occupancy at enhancer sites is unchanged. Polyamide treatment results in a time- and dose-dependent depletion of the RNAP2 large subunit RPB1 that is preventable with proteasome inhibition. This polyamide demonstrates antitumor activity in a prostate tumor xenograft model with limited host toxicity

    Low CAIX expression and absence of VHL gene mutation are associated with tumor aggressiveness and poor survival of clear cell renal cell carcinoma.

    No full text
    International audienceWe attempted to describe, in a series of clear cell renal cell carcinoma (RCC), the relationship between CAIX expression, VHL gene mutations, tumor characteristics and outcome. Radical nephrectomy was performed in 100 patients. Genomic DNA was extracted from frozen tumor samples. Four amplimers covering the whole coding sequence of the VHL gene were synthesized by PCR and sequenced. The monoclonal antibody M75 was used to evaluate CAIX protein expression immunohistochemically. VHL mutations were identified in 58 patients (58%) and high CAIX expression (>85%) was observed in 78 (78%). Tumors with VHL mutation showed higher CAIX expression than those without (p = 0.02). Low CAIX expression and absence of VHL mutation were associated with a more advanced tumors e.g., higher T stages and presence of metastases. VHL mutation and high CAIX expression predicted longer progression-free survival (p = 0.037) and disease-specific survival (p = 0.001), respectively. In combination, they defined three prognostic groups (p = 0.002): (i) good prognosis, defined as VHL mutation and high CAIX (2-year survival: 86%), (ii) intermediate prognosis with either VHL mutation or high CAIX (69%), and (iii) poor prognosis with no VHL mutation and low CAIX (45%, median survival 18 months). CAIX expression, but not VHL mutational status, was an independent prognostic factor in multivariate analysis. Taken together, CAIX expression and VHL mutational status are able to stratify patients with clear cell RCC into distinct groups with regards to clinicopathological variables and prognosis, with low CAIX expression and absence of VHL mutation being associated with a poor clinicopathological phenotype and diminished survival
    • …
    corecore