641 research outputs found

    Editorial: Arbuscular Mycorrhizal Fungi: The Bridge Between Plants, Soils, and Humans

    Get PDF
    Editorial on the Research Topic: Arbuscular Mycorrhizal Fungi: The Bridge Between Plants, Soils, and Human

    Analysis of a consensus protocol for extending consistent subchains on the bitcoin blockchain

    Get PDF
    Currently, an increasing number of third-party applications exploit the Bitcoin blockchain to store tamper-proof records of their executions, immutably. For this purpose, they leverage the few extra bytes available for encoding custom metadata in Bitcoin transactions. A sequence of records of the same application can thus be abstracted as a stand-alone subchain inside the Bitcoin blockchain. However, several existing approaches do not make any assumptions about the consistency of their subchains, either (i) neglecting the possibility that this sequence of messages can be altered, mainly due to unhandled concurrency, network malfunctions, application bugs, or malicious users, or (ii) giving weak guarantees about their security. To tackle this issue, in this paper, we propose an improved version of a consensus protocol formalized in our previous work, built on top of the Bitcoin protocol, to incentivize third-party nodes to consistently extend their subchains. Besides, we perform an extensive analysis of this protocol, both defining its properties and presenting some real-world attack scenarios, to show how its specific design choices and parameter configurations can be crucial to prevent malicious practices

    Influencing brain waves by evoked potentials as biometric approach: taking stock of the last six years of research

    Get PDF
    The scientific advances of recent years have made available to anyone affordable hardware devices capable of doing something unthinkable until a few years ago, the reading of brain waves. It means that through small wearable devices it is possible to perform an electroencephalography (EEG), albeit with less potential than those offered by high-cost professional devices. Such devices make it possible for researchers a huge number of experiments that were once impossible in many areas due to the high costs of the necessary hardware. Many studies in the literature explore the use of EEG data as a biometric approach for people identification, but, unfortunately, it presents problems mainly related to the difficulty of extracting unique and stable patterns from users, despite the adoption of sophisticated techniques. An approach to face this problem is based on the evoked potentials (EPs), external stimuli applied during the EEG reading, a noninvasive technique used for many years in clinical routine, in combination with other diagnostic tests, to evaluate the electrical activity related to some areas of the brain and spinal cord to diagnose neurological disorders. In consideration of the growing number of works in the literature that combine the EEG and EP approaches for biometric purposes, this work aims to evaluate the practical feasibility of such approaches as reliable biometric instruments for user identification by surveying the state of the art of the last 6 years, also providing an overview of the elements and concepts related to this research area

    Leveraging the Training Data Partitioning to Improve Events Characterization in Intrusion Detection Systems

    Get PDF
    The ever-increasing use of services based on computer networks, even in crucial areas unthinkable until a few years ago, has made the security of these networks a crucial element for anyone, also in consideration of the increasingly sophisticated techniques and strategies available to attackers. In this context, Intrusion Detection Systems (IDSs) play a primary role since they are responsible for analyzing and classifying each network activity as legitimate or illegitimate, allowing us to take the necessary countermeasures at the appropriate time. However, these systems are not infallible due to several reasons, the most important of which are the constant evolution of the attacks (e.g., zero-day attacks) and the problem that many of the attacks have behavior similar to those of legitimate activities, and therefore they are very hard to identify. This work relies on the hypothesis that the subdivision of the training data used for the IDS classification model definition into a certain number of partitions, in terms of events and features, can improve the characterization of the network events, improving the system performance. The non-overlapping data partitions train independent classification models, classifying the event according to a majority-voting rule. A series of experiments conducted on a benchmark real-world dataset support the initial hypothesis, showing a performance improvement with respect to a canonical training approach

    A local feature engineering strategy to improve network anomaly detection

    Get PDF
    The dramatic increase in devices and services that has characterized modern societies in recent decades, boosted by the exponential growth of ever faster network connections and the predominant use of wireless connection technologies, has materialized a very crucial challenge in terms of security. The anomaly-based intrusion detection systems, which for a long time have represented some of the most efficient solutions to detect intrusion attempts on a network, have to face this new and more complicated scenario. Well-known problems, such as the difficulty of distinguishing legitimate activities from illegitimate ones due to their similar characteristics and their high degree of heterogeneity, today have become even more complex, considering the increase in the network activity. After providing an extensive overview of the scenario under consideration, this work proposes a Local Feature Engineering (LFE) strategy aimed to face such problems through the adoption of a data preprocessing strategy that reduces the number of possible network event patterns, increasing at the same time their characterization. Unlike the canonical feature engineering approaches, which take into account the entire dataset, it operates locally in the feature space of each single event. The experiments conducted on real-world data showed that this strategy, which is based on the introduction of new features and the discretization of their values, improves the performance of the canonical state-of-the-art solutions

    A Region-based Training Data Segmentation Strategy to Credit Scoring

    Get PDF
    The rating of users requesting financial services is a growing task, especially in this historical period of the COVID-19 pandemic characterized by a dramatic increase in online activities, mainly related to e-commerce. This kind of assessment is a task manually performed in the past that today needs to be carried out by automatic credit scoring systems, due to the enormous number of requests to process. It follows that such systems play a crucial role for financial operators, as their effectiveness is directly related to gains and losses of money. Despite the huge investments in terms of financial and human resources devoted to the development of such systems, the state-of-the-art solutions are transversally affected by some well-known problems that make the development of credit scoring systems a challenging task, mainly related to the unbalance and heterogeneity of the involved data, problems to which it adds the scarcity of public datasets. The Region-based Training Data Segmentation (RTDS) strategy proposed in this work revolves around a divide-and-conquer approach, where the user classification depends on the results of several sub-classifications. In more detail, the training data is divided into regions that bound different users and features, which are used to train several classification models that will lead toward the final classification through a majority voting rule. Such a strategy relies on the consideration that the independent analysis of different users and features can lead to a more accurate classification than that offered by a single evaluation model trained on the entire dataset. The validation process carried out using three public real-world datasets with a different number of features. samples, and degree of data imbalance demonstrates the effectiveness of the proposed strategy. which outperforms the canonical training one in the context of all the datasets

    Clinico-pathological study of oesophageal cancer: a 3 years retrospective and 1½ year’s prospective analysis

    Get PDF
    Background: In India, oesophageal cancer is second most common cancer among males and fourth most common among females and is associated with certain diets and lifestyle. In India, the age-adjusted incidence rates for oesophageal cancer are the highest in men (25.5) and women (5.5) in Mizoram. Aim of the study was to find the clinical and histopathological findings of oesophageal cancer patients at Civil Hospital, Aizawl.Methods: A descriptive study (3 years retrospective and 1½ years prospective) was conducted at Civil Hospital, Aizawl, Mizoram from July 2013 to December 2014 (1½ years) amongst 104 patients reporting to Civil Hospital, Aizawl for oesophageal cancer.Results: History of progressive dysphagia to solids was most common symptom and observed in 91.3% patients. Histopathological examination of resected esophageal specimen showed 95.7% patients were detected with squamous cell carcinoma, 4.3% patients were detected with no proper malignancy/residual tumor.Conclusion: Squamous-cell carcinoma was the most common type of esophageal cancer occurring in the middle third of the oesophagus with as observed on upper gastrointestinal (GI) endoscopy. More men were affected than female.

    Arbuscular mycorrhizal fungi altered the hypericin, pseudohypericin, and hyperforin content in flowers of Hypericum perforatum grown under contrasting P availability in a highly organic substrate

    Get PDF
    St. John’s Wort (Hypericum perforatum) is a perennial herb able to produce water-soluble active ingredients (a.i.), mostly in flowers, with a wide range of medicinal and biotechnological uses. However, information about the ability of arbuscular mycorrhizal fungi (AMF) to affect its biomass accumulation, flower production, and concentration of a.i. under contrasting nutrient availability is still scarce. In the present experiment, we evaluated the role of AMF on growth, flower production, and concentration of bioactive secondary metabolites (hypericin, pseudohypericin, and hyperforin) of H. perforatum under contrasting P availability. AMF stimulated the production of aboveground biomass under low P conditions and increased the production of root biomass. AMF almost halved the number of flowers per plant by means of a reduction of the number of flower-bearing stems per plant under high P availability and through a lower number of flowers per stem in the low-P treatment. Flower hyperforin concentration was 17.5% lower in mycorrhizal than in non-mycorrhizal plants. On the contrary, pseudohypericin and hypericin concentrations increased by 166.8 and 279.2%, respectively, with AMF under low P availability, whereas no effect of AMF was found under high P availability. These results have implications for modulating the secondary metabolite production of H. perforatum. However, further studies are needed to evaluate the competition for photosynthates between AMF and flowers at different nutrient availabilities for both plant and AM fungus

    Popularity prediction of instagram posts

    Get PDF
    Predicting the popularity of posts on social networks has taken on significant importance in recent years, and several social media management tools now offer solutions to improve and optimize the quality of published content and to enhance the attractiveness of companies and organizations. Scientific research has recently moved in this direction, with the aim of exploiting advanced techniques such as machine learning, deep learning, natural language processing, etc., to support such tools. In light of the above, in this work we aim to address the challenge of predicting the popularity of a future post on Instagram, by defining the problem as a classification task and by proposing an original approach based on Gradient Boosting and feature engineering, which led us to promising experimental results. The proposed approach exploits big data technologies for scalability and efficiency, and it is general enough to be applied to other social media as well

    Influence of Arbuscular Mycorrhizae on Biomass Production and Nitrogen Fixation of Berseem Clover Plants Subjected to Water Stress.

    Get PDF
    Several studies, performed mainly in pots, have shown that arbuscular mycorrhizal symbiosis can mitigate the negative effects of water stress on plant growth. No information is available about the effects of arbuscular mycorrhizal symbiosis on berseem clover growth and nitrogen (N) fixation under conditions of water shortage. A field experiment was conducted in a hilly area of inner Sicily, Italy, to determine whether symbiosis with AM fungi can mitigate the detrimental effects of drought stress (which in the Mediterranean often occurs during the late period of the growing season) on forage yield and symbiotic N2 fixation of berseem clover. Soil was either left under water stress (i.e., rain-fed conditions) or the crop was well-watered. Mycorrhization treatments consisted of inoculation of berseem clover seeds with arbuscular mycorrhizal spores or suppression of arbuscular mycorrhizal symbiosis by means of fungicide treatments. Nitrogen biological fixation was assessed using the 15N-isotope dilution technique. Arbuscular mycorrhizal symbiosis was able to mitigate the negative effect of water stress on berseem clover grown in a typical semiarid Mediterranean environment. In fact, under water stress conditions, arbuscular mycorrhizal symbiosis resulted in increases in total biomass, N content, and N fixation, whereas no effect of crop mycorrhization was observed in the well-watered treatment
    • …
    corecore