13 research outputs found

    Liquid-Liquid Phase Separation in an Elastic Network

    Full text link
    Living and engineered systems rely on the stable coexistence of two interspersed liquid phases. Yet surface tension drives their complete separation. Here we show that stable droplets of uniform and tuneable size can be produced through arrested phase separation in an elastic matrix. Starting with an elastic polymer network swollen by a solvent mixture, we change the temperature or composition to drive demixing. Droplets nucleate and grow to a stable size that is tuneable by the network cross-linking density, the cooling rate, and the composition of the solvent mixture. We discuss thermodynamic and mechanical constraints on the process. In particular, we show that the threshold for macroscopic phase separation is altered by the elasticity of the polymer network, and we highlight the role of internuclear correlations in determining the droplet size and polydispersity. This phenomenon has potential applications ranging from colloid synthesis and structural colour to phase separation in biological cells.Comment: 6 figure

    Designing Refractive Index Fluids using the Kramers-Kronig Relations

    Full text link
    For a number of optical applications, it is advantageous to precisely tune the refractive index of a liquid. Here, we harness a well-established concept in optics for this purpose. The Kramers-Kronig relation provides physical connection between the spectral variation of the (real) refractive index and the absorption coefficient. In particular a sharp spectral variation of the absorption coefficient gives rise to either an enhancement or reduction of the refractive index in the spectral vicinity of this variation. By using bright commodity dyes that fulfil this absorption requirement, we demonstrate the use of the Kramers-Kronig relation to predictively dial-in refractive index values in water solutions that are otherwise only attained by toxic specialised liquids

    Efficient structural color from pigment-loaded nanostructures

    Full text link
    Color can originate from wavelength-dependence in the absorption of pigments or the scattering of nanostructures. While synthetic colors are dominated by the former, vivid structural colors found in nature have inspired much research on the latter. However, many of the most vibrant colors in nature involve the interactions of structure and pigment. Here, we demonstrate that pigment can be exploited to efficiently create bright structural color at wavelengths outside its absorption band. We created pigment-enhanced Bragg reflectors by sequentially spin-coating layers of poly-vinyl alcohol (PVA) and polystyrene (PS) loaded with β\beta-carotene (BC). With only 10 double layers, we acheived a peak reflectance over 0.80.8 at 550 nm and normal incidence. A pigment-free multilayer made of the same materials would require 25 double layers to achieve the same reflectance. Further, pigment loading suppressed the Bragg reflector's characteristic iridescence. Using numerical simulations, we further show that similar pigment loadings could significantly expand the gamut of non-iridescent colors addressable by photonic glasses.Comment: 11 pages, 8 figure

    When black and white make green: the surprising interplay of structure and pigments

    Get PDF
    The natural world is teeming with color, which originates either from the wavelength- dependent absorp- tion of light by pigments or from scattering from nanoscale structures, or both. While the latter ' structural color ' has been a topic of intense study in recent years, the most vibrant colors in nature involve contributions from both structure and pigment. The study of structure–pigment interactions in biological systems is currently in its infancy and could inspire more technological applications, such as sustainable, toxin-free pigments and more efficient light harvesting

    Secure and Intelligent Energy Data Management Scheme for Smart IoT Devices

    No full text
    The renewable energy plays an increasingly important role in many fields such as lighting, automobile, and electric power. In order to make full use of the renewable energy, various smart Internet of Thing (IoT) devices are deployed. However, in the field of energy management, the two-way mismatch between the demand and the supply of the renewable energy will greatly affect the efficiency of the renewable energy. In addition, the security threat of the energy data and the privacy leakage of the user may hinder the further development of smart IoT devices. Therefore, how to achieve consistency and balance between the demand and the renewable energy supply and how to guarantee the security and privacy of smart IoT devices become the key problems of the energy-efficient smart environment. In this paper, a secure and intelligent energy data management scheme for smart IoT devices is proposed. It is worth noting that, with the help of artificial intelligence (AI) technologies and secure cryptography primitives, the proposed scheme realizes high-efficient and secure energy utilization in a smart environment. Specifically, the proposed scheme aims at improving the efficiency of the energy utilization in the multidimensions of a smart environment. In order to realize the fine-grain energy management of smart IoT devices, strategies of three different dimensions are considered and realized in the proposed scheme. Moreover, technologies in AI are applied and integrated into the energy management scheme. The analysis shows that the proposed scheme can make full use of the renewable energy in smart IoT devices

    Secure Emergent Data Protection Scheme for a Space-Terrestrial Integrated Network

    No full text

    Putting the Squeeze on Phase Separation

    No full text
    Phase separation is a ubiquitous process and finds applications in a variety of biological, organic, and inorganic systems. Nature has evolved the ability to control phase separation to both regulate cellular processes and make composite materials with outstanding mechanical and optical properties. Striking examples of the latter are the vibrant blue and green feathers of many bird species, which are thought to result from an exquisite control of the size and spatial correlations of their phase-separated microstructures. By contrast, it is much harder for material scientists to arrest and control phase separation in synthetic materials with such a high level of precision at these length scales. In this Perspective, we briefly review some established methods to control liquid-liquid phase separation processes and then highlight the emergence of a promising arrest method based on phase separation in an elastic polymer network. Finally, we discuss upcoming challenges and opportunities for fabricating microstructured materials via mechanically controlled phase separation.ISSN:2691-370

    Transient Supramolecular Assembly by Programmable pH Cycles

    No full text
    Transient self-assembly is a necessary step towards the development of life-like materials. Our approach allows to program pH-driven supramolecular assembly in the time domain with tailorable lag- and life-times, overcoming the limitations of previously described approaches and setting a new standard for active materials design.</div

    Supramolecular assembly by time-programmed acid autocatalysis

    No full text
    Autocatalytic pH clocks can be useful to control self-assembly in the time domain. Their applications are, however, limited by the currently available toolbox. We describe here an approach for the design of a dynamic pH switch that generates intense alkali-to-acid changes after a tailorable lagtime (from minutes to hours), and we demonstrate its application for the time-controlled supramolecular self-assembly of nanofibers.ISSN:2058-968
    corecore