537 research outputs found

    Study of Speaker Recognition Systems

    Get PDF
    Speaker Recognition is the computing task of validating a user’s claimed identity using characteristics extracted from their voices. This technique is one of the most useful and popular biometric recognition techniques in the world especially related to areas in which security is a major concern. It can be used for authentication, surveillance, forensic speaker recognition and a number of related activities. Speaker recognition can be classified into identification and verification. Speaker identification is the process of determining which registered speaker provides a given utterance. Speaker verification, on the other hand, is the process of accepting or rejecting the identity claim of a speaker. The process of Speaker recognition consists of 2 modules namely: - feature extraction and feature matching. Feature extraction is the process in which we extract a small amount of data from the voice signal that can later be used to represent each speaker. Feature matching involves identification of the unknown speaker by comparing the extracted features from his/her voice input with the ones from a set of known speakers. Our proposed work consists of truncating a recorded voice signal, framing it, passing it through a window function, calculating the Short Term FFT, extracting its features and matching it with a stored template. Cepstral Coefficient Calculation and Mel frequency Cepstral Coefficients (MFCC) are applied for feature extraction purpose. VQLBG (Vector Quantization via Linde-Buzo-Gray), DTW (Dynamic Time Warping) and GMM (Gaussian Mixture Modelling) algorithms are used for generating template and feature matching purpose

    Intelligent optimization of Circuit placement on FPGA

    Get PDF
    Field programmable gate arrays (FPGAs) have revolutionized the way digital systems are designed and built over the past decade. With architectures capable of holding tens of millions of logic gates on the horizon and planned integration of configurable logic into system-on-chip platforms, the versatility of programmable devices expected to increase dramatically. Placement is one of the vital steps in mapping a design into FPGA in order to take best advantage of the resources and flexibility provided by it. Here, we propose to test techniques of Placement Optimization on MCNC Benchmark circuits. PSO (Particle Swarm Optimization) has been implemented on circuit netlist with bounding box as cost function. Alternate cost functions were also employed to verify efficiency of optimization. Furthermore, lazy descent was introduced into the algorithm to impede premature convergence. Different values of acceleration and weighing factors were used in the implementation and corresponding convergence results were analyzed. Keywords- FPGA Placement; Particle Swarm Optimization; MCNC Benchmarks Circuits; Bounding Box driven Placement

    Bioethanol production from alkali-pretreated rice straw: effects on fermentation yield, structural characterization, and ethanol analysis

    Get PDF
    Current ethanol production technology has a dire need for efficient conversion of lignocellulosic biomass to fermentable sugars. The conversion requires pretreatment of the biomass, one of the most expensive steps, and thus it is quite necessary to identify the most cost-effective and high-efficiency conversion method. In this study, rice straw (RS) biomass was pretreated using 4% NaOH alkali, soaked for 4 h, and autoclaved for 30 min. The structural and morphological changes were examined using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) analysis in both native and alkali-treated RS. The FTIR analysis revealed that native RS contains a considerable amount of lignin that was removed after the pretreatment process. The XRD pattern of the RS revealed an increasing crystallite size of the pretreated lignocellulosic biomass. The study of SEM clearly showed the distorted structure and surface porosity after the pretreatment process. Enzymatic hydrolysis efficiency was checked by comparing the commercial enzymes and microbial hydrolysis extracted from a fungal isolate. The best-reducing sugar yield obtained was 0.62 g/L, achieved at optimized conditions from the commercial enzymes. Fermentation efficiency was checked using the yeast isolate Saccharomyces cerevisiae in both the native and pretreated substrate, and the highest ethanol concentration (21.45%) was achieved using 20% w/v biomass loading, enzyme loading (2:1:1), and fermentation for a week at 30°C and pH 4.5. This concentration was higher than that of the untreated RS (3.67%). The ethanol thus produced was further checked for analysis by the 1H and 13C nuclear magnetic resonance (NMR) methods

    Harnessing the power of nutritional antioxidants against adrenal hormone imbalance-associated oxidative stress

    Get PDF
    Oxidative stress, resulting from dysregulation in the secretion of adrenal hormones, represents a major concern in human health. The present review comprehensively examines various categories of endocrine dysregulation within the adrenal glands, encompassing glucocorticoids, mineralocorticoids, and androgens. Additionally, a comprehensive account of adrenal hormone disorders, including adrenal insufficiency, Cushing’s syndrome, and adrenal tumors, is presented, with particular emphasis on their intricate association with oxidative stress. The review also delves into an examination of various nutritional antioxidants, namely vitamin C, vitamin E, carotenoids, selenium, zinc, polyphenols, coenzyme Q10, and probiotics, and elucidates their role in mitigating the adverse effects of oxidative stress arising from imbalances in adrenal hormone levels. In conclusion, harnessing the power of nutritional antioxidants has the potential to help with oxidative stress caused by an imbalance in adrenal hormones. This could lead to new research and therapeutic interventions

    Oxidative stress, hormones, and effects of natural antioxidants on intestinal inflammation in inflammatory bowel disease

    Get PDF
    Inflammatory bowel disease (IBD) is a chronic, relapsing gastrointestinal (GI) disorder characterized by intestinal inflammation. The etiology of IBD is multifactorial and results from a complex interplay between mucosal immunity, environmental factors, and host genetics. Future therapeutics for GI disorders, including IBD, that are driven by oxidative stress require a greater understanding of the cellular and molecular mechanisms mediated by reactive oxygen species (ROS). In the GI tract, oxidative stressors include infections and pro-inflammatory responses, which boost ROS generation by promoting the production of pro-inflammatory cytokines. Nuclear factor kappa B (NF-κB) and nuclear factor erythroid 2–related factor 2 (Nrf2) represent two important signaling pathways in intestinal immune cells that regulate numerous physiological processes, including anti-inflammatory and antioxidant activities. Natural antioxidant compounds exhibit ROS scavenging and increase antioxidant defense capacity to inhibit pro-oxidative enzymes, which may be useful in IBD treatment. In this review, we discuss various polyphenolic substances (such as resveratrol, curcumin, quercetin, green tea flavonoids, caffeic acid phenethyl ester, luteolin, xanthohumol, genistein, alpinetin, proanthocyanidins, anthocyanins, silymarin), phenolic compounds including thymol, alkaloids such as berberine, storage polysaccharides such as tamarind xyloglucan, and other phytochemicals represented by isothiocyanate sulforaphane and food/spices (such as ginger, flaxseed oil), as well as antioxidant hormones like melatonin that target cellular signaling pathways to reduce intestinal inflammation occurring with IBD

    Postbiotic production: harnessing the power of microbial metabolites for health applications

    Get PDF
    Postbiotics, which are bioactive substances derived from the metabolic processes of beneficial microbes, have received considerable attention in the field of microbiome science in recent years, presenting a promising path for exploration and innovation. This comprehensive analysis looks into the multidimensional terrain of postbiotic production, including an extensive examination of diverse postbiotic classes, revealing their sophisticated mechanisms of action and highlighting future applications that might significantly affect human health. The authors thoroughly investigate the various mechanisms that support postbiotic production, ranging from conventional fermentation procedures to cutting-edge enzyme conversion and synthetic biology approaches. The review, as an acknowledgment of the field’s developing nature, not only highlights current achievements but also navigates through the problems inherent in postbiotic production. In order to successfully include postbiotics in therapeutic interventions and the production of functional food ingredients, emphasis is given to critical elements, including improving yields, bolstering stability, and assuring safety. The knowledge presented herein sheds light on the expanding field of postbiotics and their potential to revolutionize the development of novel therapeutics and functional food ingredients

    Phytonanofabrication of iron oxide particles from the Acacia jacquemontii plant and their potential application for the removal of brilliant green and Congo red dye from wastewater

    Get PDF
    Phytonanofabrication is one of the most promising areas that has drawn the attention of scientists worldwide due to its eco-friendly nature and biocompatibility. In the current investigation, we reported the phyto-assisted formation of iron oxide nanoparticles (IONPs) from a rare species of Acacia (Acacia jacquemontii). First, ethanolic extracts of the stem powder were analyzed by high-performance thin-layer chromatography (HPTLC) for the identification of phytochemicals in the stem sections of Acacia. Furthermore, IONPs were synthesized by a chemical co-precipitation method by using the stem extract. The phytonanofabricated iron oxide particles were investigated by UV–Vis spectroscopy, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and Energy-dispersive X-ray spectroscopy (EDS) for elemental analysis. HPTLC confirmed the presence of several phenols and terpenoids in the ethanolic extracts of the stem. UV–Vis spectroscopy exhibited an absorbance peak at 380 nm, indicating the formation of IONPs, while FTIR spectroscopy showed the typical bands for Fe-O in the range of 599–1,000 cm−1 in addition to several functional groups of organic molecules at 1,596 cm−1, 2,313 cm−1, and 3,573 cm−1. XRD exhibits the amorphous nature of IONPs with peaks at 30.7, 35.5, and 62.7 nm. The IONPs were spherical-shaped, whose size varies from 10 to 70 nm, as confirmed by FESEM. EDS exhibited the presence of Fe, O, C, and NaCl. Finally, the phytonanofabricated iron oxide particles were utilized for the removal of brilliant green (BG) and Congo red (CR) dye from the aqueous solution. The removal efficiency of BG dye was up to 54.28%, while that of Congo red dye was up to 36.72% in 120 min and 60 min, respectively. Furthermore, the effect of pH and contact time was also assessed on both the dyes, where CR exhibited maximum removal at acidic pH, i.e., 47.5%, while BG showed maximum removal at pH 10, i.e., 76.59%

    4-Dimensional printing: exploring current and future capabilities in biomedical and healthcare systems—a Concise review

    Get PDF
    4-Dimensional Printing (4DP) is the latest concept in the pharmacy and biomedical segment with enormous potential in dosage from personalization and medication designing, which adopts time as the fourth dimension, giving printed structures the flexibility to modify their morphology. It can be defined as the fabrication in morphology with the help of smart/intelligent materials like polymers that permit the final object to alter its properties, shape, or function in response to external stimuli such as heat, light, pH, and moisture. The applications of 4DP in biomedicines and healthcare are explored with a focus on tissue engineering, artificial organs, drug delivery, pharmaceutical and biomedical field, etc. In the medical treatments and pharmaceutical field 4DP is paving the way with unlimited potential applications; however, its mainstream use in healthcare and medical treatments is highly dependent on future developments and thorough research findings. Therefore, previous innovations with smart materials are likely to act as precursors of 4DP in many industries. This review highlights the most recent applications of 4DP technology and smart materials in biomedical and healthcare fields which can show a better perspective of 4DP applications in the future. However, in view of the existing limitations, major challenges of this technology must be addressed along with some suggestions for future research. We believe that the application of proper regulatory constraints with 4DP technology would pave the way for the next technological revolution in the biomedical and healthcare sectors
    corecore