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ABSTRACT 

 

 

 

Field programmable gate arrays (FPGAs) have revolutionized the way digital 

systems are designed and built over the past decade. With architectures capable of 

holding tens of millions of logic gates on the horizon and planned integration of 

configurable logic into system-on-chip platforms, the versatility of programmable 

devices expected to increase dramatically. Placement is one of the vital steps in 

mapping a design into FPGA in order to take best advantage of the resources and 

flexibility provided by it. Here, we propose to test techniques of Placement 

Optimization on MCNC Benchmark circuits. PSO (Particle Swarm Optimization) 

has been implemented on circuit netlist with bounding box as cost function. 

Alternate cost functions were also employed to verify efficiency of optimization. 

Furthermore, lazy descent was introduced into the algorithm to impede premature 

convergence. Different values of acceleration and weighing factors were used in the 

implementation and corresponding convergence results were analyzed.  

 
Keywords- FPGA Placement; Particle Swarm Optimization; MCNC Benchmarks 

Circuits; Bounding Box driven Placement. 
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1. INTRODUCTION 

 

1.1 Motivation  

 

In the mid-1980‟s, field-programmable gate arrays were introduced in the 

commercial market and thereon, have been produced en masse. The design of 

digital hardware has undergone rapid changes in the meanwhile. They have become 

indispensable system parts because of their versatility to execute different logic 

functions and easy reconfigurablity in step with changing hardware requirements.  

The easy availability of logic, routing resources has allowed for the existence of 

hardware with hundreds of FPGA devices. This has been useful for verifying 

prototype logic designs and parallel running computing platforms. But a matter of 

concern remains that the leaps and bounds in hardware prowess are not reflected in 

the marketed software for mapping designs automatically. 

Most users agree that the greatest restriction frequently experienced in the use of 

contemporary FPGA systems  is the average time taken to place and route circuits 

inside a single board. Typically in FPGAs, the above operations can take hours and 

in some cases, days compared to tens of minutes on other options. On board 

implementation isn‟t necessarily a simple task as conceptual reality is impeded by 

the above restriction. If the developer is using resources to develop one digital 

design over several weeks/months, then compilation period in the order of hours is 

acceptable but if only computing is required of the resources, it is otherwise. In 
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FPGAs, a bargain has to be reached when compared with ASIC platforms. When set 

against semi custom platforms, FPGAs can offer lower prices because of mass 

production. Design mapping is also a moot point. For a fixed size device, placement 

and routing based on the picked algorithm depends on the efficiency of optimization.  

Optimality in VLSI is measured in terms of chip size, wire length, delay 

minimization etc. which have a direct impact on the manufacturing cost, the IC 

performance and its power consumption. 

 

1.2 FPGA Architecture Basics 

 

Most commercial SRAM-based FPGA architectures have the same basic structure, a 

two-dimensional array of programmable logic blocks, that can implement a variety 

of bit-wise logic functions, surrounded by channels of wire segments to interconnect 

logic block I/O. [1] In most cases, FPGA logic blocks contain one or more 

programmable lookup tables that can be programmed to perform any Boolean logic 

function of a small number of inputs (typically 4-5), a small number of simple 

Boolean logic gates, and one or more flip-flops. User-programmable switches control 

interconnection between adjacent wire segments and wire segments and logic 

blocks. 

Three main classes of SRAM-based FPGA architecture have evolved over the past 

decade: cell-based, hierarchical, and island-style. Each architecture is defined by 
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the amount of logic that can be implemented in an array logic block and the length 

and interconnection pattern of its channel wire segments. 

Cell-based FPGA architectures, such as those available commercially from Atmel 

Corporation and National Semiconductor, consist of a two-dimensional array of 

simple logic blocks which typically contain two or three two-input logic structures 

such as XOR, AND, and NAND gates. Inter-logic block communication is primarily 

made through direct-wired connections from block outputs to inputs on adjacent 

logic blocks. Small numbers of wire segments that span multiple logic blocks offer a 

minimal amount of global communication but typically not enough to implement 

circuits with randomized communication patterns. These routing restrictions 

frequently limit the application domain of these devices to circuits with primarily 

nearest-neighbor connectivity such as bit-serial arithmetic units and regular 2-D 

filter arrays. 

Devices with a hierarchical architecture, like those available from Altera 

Corporation [2], contain a 2-D array of complex logic blocks with many lookup tables 

and flip-flops (typically 8 or more) per block. Inter-logic block signals are carried on 

wire segments that span the entire device providing numerous high-speed paths 

between device I/O and internal logic. This architectural choice leads to an ideal 

implementation setting for designs with many high-fanout signals. These devices 

can effectively be used to implement many types of logic circuits exhibiting a variety 

of interconnection patterns. 
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Island-style devices provide an architectural compromise between cell-based and 

hierarchical architectures. As detailed in the next section, island-style devices are 

characterized by logic blocks of moderate complexity generally containing a small 

number of lookup tables (typically 2-4) per block. Routing channels with a range of 

wire segment lengths are available to support both local and global device 

routing. 

 

1.3 Island-style FPGA Architectures 
 

Perhaps the best known of all FPGA architectures is the Logic Cell Array 

architecture available from Xilinx Corporation [3]. This island-style architecture 

contains a square array of logic blocks embedded in a uniform mesh of routing 

resources. 

 

 

 

 

 

 

 

 

 Figure 1-1 Xilinx XC400 Logic Block 
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The logic block of the XC4000 Xilinx device, shown in Figure 1-1, contains three 

lookup-tables (LUTs), two programmable flip-flops and multiple programmable 

multiplexers. With this logic block structure, any function of five inputs (with F and 

G inputs identical), any two functions of four inputs (F and G inputs different), and 

some functions of up to nine inputs can be evaluated. The multiplexers can be used 

to route combinational results to either X or Y outputs or to flip-flops. The C inputs 

provide either a ninth data input for the 3-input LUT or direct inputs to the flip-

flops. 

As mentioned earlier, island-style routing architectures are generally characterized 

by their two dimensional symmetry and their inclusion of wire segments that span 

one or more logic blocks. The percentage of segments of each length (or 

segmentation) in each routing channel along with the grain size of the logic block in 

terms of look-up tables and flip-flops defines a specific island-style family. The 

segmentation of wires allows for high-speed connectivity of signals, removing the 

need for signals to pass through an excessive number of routing switches. 

Each logic block and adjacent routing segments is considered a routing cell. This 

single cell can be highly optimized in VLSI layout and then replicated both 

horizontally and vertically to form a uniform array, reducing the design time 

needed to create a new device family or facilitating the expansion of an existing 

family to larger logic array sizes. An illustration of the XC4000 routing cell is shown 

in Figure 1-2.  
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Most interconnect in this family is in the form of single-length lines with additional 

connectivity provided by double-length lines and long lines which span the entire 

array. The small transparent squares in the figure represent programmable 

connections to allow for connectivity between intersecting segments or segments 

and logic blocks. In the next section the interconnection philosophy and physical 

implementation of segment to segment connectivity and segment to logic 

connectivity is discussed. 

Other commercial segmented devices contain additional interconnect segments that 

spans four logic blocks (XC4000X [4]) and five logic blocks (Orca 3C [3]) while fitting 

within the limitation of a single routing cell. 

A user algorithm is typically specified in a high-level language (such as C or C++) or 

in a behavioral hardware description language (VHDL or Verilog).This synthesis 

Figure 1-2 Xilinx XC400 Placement and Routing cell 
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step typically requires the allocation of datapath hardware resources in the form of 

high-level blocks such as ALUs, multipliers, and memory components, and the 

scheduling of communication between these components. 

 

2. CAD DESIGN FLOW 

 

2.1 FPGA System CAD Flow 
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Figure 2-1 FPGA CAD Design Flow 
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The steps by which a specific reconfigurable computing software system performs 

this translation process, vary somewhat from system to system, but is essentially 

the following: 

2.1.1 Partitioning: 

The macro-based netlist created by high-level synthesis must be partitioned into 

smaller netlists for each FPGA device and inter-FPGA signals must be globally 

routed using system-level routing resources. In the partitioning step, the netlist 

generated by logic optimization is subdivided into pieces of circuitry small enough to 

meet the logic and inter-chip communication capacities of the target FPGA devices. 

As part of the partitioning process, each cluster may be assigned to a specific FPGA 

to guarantee that specific system-level bandwidth requirements are met. 

2.1.2 Placement: 

 

After technology mapping, all design logic has been mapped into logic blocks at the 

quantization level of the basic block of the island-style device. The next step in the 

translation process is to assign the packed blocks of logic to specific logic block 

locations in the prefabricated two-dimensional array. The goal of placement for 

island-style FPGAs is to create a placed configuration of logic blocks that can be 

successfully interconnected in a subsequent routing step given the routing resources 

available. 

2.1.3 Routing:  

The routing phase interconnects specified sets of terminals, i.e., the signal nets of 

the design, by wiring within routing regions that lie between or over the functional 
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units. (A signal net is a set of the module output terminals and the corresponding 

module input terminals which need to be connected to each other using routing)  

2.1.4 Compaction: 

Compaction is usually the final step in the physical layout design of VLSI circuits. 

It is performed to reduce integrated circuit area while eliminating design rule 

violations. If a design has initial design rule violations, spacing could actually 

increase the size of the chip. Spacing minimizes the area of an integrated circuit 

without changing its topology. It is important to keep the topology constant to 

preserve the timing and performance optimization of the previous phases. Thus, the 

symbolic layout is transformed to a mask layout with the goal of minimizing the 

size of the resulting layout. 

We are interested in the optimization of placement as it is a pivotal stage with 

respect to subsequent routing of components. 

2.2 The Placement Problem 

 

Ideally, while allocating placement, it would be desirable to estimate localized 

routability in each subsection of the target device since failure at any specific point 

in a subsequent routing step leads to an overall mapping failure. In practice, given 

the distributed nature of interconnect and the dependencies created by 

segmentation, this becomes infeasible and the total design wire length of all design 

nets is used as an evaluation metric for quality of placement and routability. Other 

widely used metrics are  
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 Timing  

 Congestion 

 Power 

Almost all island-style FPGA architectures use a variant of the iterative simulated 

annealing algorithm for placement. 

3. PARTICLE SWARM OPTIMIZATION OF FPGA PLACEMENT: 

 

3.1 Particle Swarm Optimization 

 

The optimization problem in hand is attempted using Particle swarm optimization, 

which is one of the very recent tools introduced by Kennedy (a social psychologist) 

and Eberhart (an electrical engineer). The initial concept of the swarm intelligence 

imitates the swarm of birds. It tries to locate the optima based upon the social 

interaction as well as the individual cognition. 

In PSO, a particle is defined to be all any possible solution of the problem in a 

solution space and we use a group of particles at different locations to find the 

optimum solution. The movement of the particle is decided by two things: Individual 

cognition and social interaction. 

1. Each particle guides itself to the best possible solution in its neighboring 

space, also known as pbest. Pbest(previous best) can be related to the 

particle‟s cognition of its own history in finding different results when it 

moves through the space.   
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2.  Also before taking the next move each particle consider the location of the 

particle which  achieved the best fitness, that‟s known as gbest (global best) 

Both the above two factors and the present velocity of the particle affects the 

velocity In the next iteration.  The velocity is added to the present location of the 

particle to get the next location which will help it move towards the best 

location(gbest), achieved by the swarm, while still looking for an even better 

location(improving pbest).  

A comprehensive algorithm of PSO based computer program is given below, 

1. Initialize an array of particles with random position xi and velocity vi  in the 

solution space. 

2. PSO_Search loop starts here: 

3. For each particle in the array, evaluate the fitness function, Di 

4. Compare the particle‟s fitness with its own pbesti . If it is better than the 

pbesti  , replace the pbesti , with the present particle position, else keep the 

pbesti unchanged. 

5. Identify the particle with the best value of fitness among all the pbests and 

assign it as gbest 

6. Evaluate the velocity and update the particle position according to the 

following equations, 

vi+1 = vi + c1 *rand1( ) * (pbesti – xi) + c2 * rand2( ) * (gbest – xi)  

xi+1 =  xi +   vi 
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where rand ( ) = any random in a range of (0,1) generated each time when the 

function is evaluated. 

c1 and c2  are two constants known as acceleration constants. 

 Velocity is kept in a range of [-vmax , vmax] 

7. Check for the condition for leaving the loop i.e if  a sufficiently good fitness is 

achieved or limited number of iterations are done? 

8. End loop  

In a modified form of PSO, Shi and Eberhart introduced inertia weights to the 

velocity equation in order to control the scope of search in an efficient way and to 

reduce the importance vmax. In this new form the modified velocity equation is given 

by, 

vi+1 =wi *  vi + c1 *rand * (pbesti – xi) + c2 * rand * (gbest – xi) 

Where wi  is the inertia weight which can be changed in each iteration to control the 

scope of the search. When wi>1 the search step is higher and it can go inspect the 

behavior of different locations in the search. When wi <1, it performs a rather 

intensive search operation with a small step size. So it is better to keep the value of 

wi initially higher and then gradually reducing it to a small value to perform a 

rigorous search.  We have used the variation of the weight governed by the 

following equation, 

  =      +  
        

     
 (         ) 
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Where t is the iteration number and      and      are constants which are start 

and the end value of the weights. 

 3.2 Placement, an NP-complete problem 

 

NP class of problems consists of the all the decision problems whose positive 

solutions can be verified using a a polynomial time on a non-deterministic machine. 

NP-complete problem means there is no known polynomial time algorithm exists. 

Approximate solutions for NP-complete problems can be found using heuristic 

methods. 

Implementation of a digital circuit on FPGA involves steps such as placement of the 

CLBs and routing the interconnections in between the CLBs and I/O pads. As the 

number of CLBs in an FPGA is very large, and they can be assigned to different 

parts of the circuits in many possible ways, there is no way to prove that a 

particular solution is the best solution out of many. This is a NP-complete class of 

problem and different heuristic methods have been used to solve this problem by 

different researchers and manufacturer such as Xilinx and Altera. VPR is one of 

these placement tools, which uses Simulated Annealing technique and has very 

much become an standard in academia in this field.  In our project, we have tried to 

optimize the MCNC circuit placement using Particle Swarm Technique. 
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3.3 MCNC benchmark circuits 

 

Microelectronics Center of North Carolina (MCNC) benchmark suite was published 

for MCNC International Workshop on Logic Synthesis (IWLS), 1991. It included 

logic synthesis and optimization benchmark sets from ISCAS.85 and ISCAS.89 in 

addition to some other benchmarks collected from industry and academia. The 

benchmark suite has standardized libraries with representative circuit designs 

ranging from simple circuits to advanced circuits obtained from industry. Some of 

the circuits from list are e-64, alu4, apex2, apex4 among others. 

These benchmark circuits are widely used across industry and academia for 

comparing different implementation results in various deferring architecture and 

languages. these circuits are available in many different formats such as 

„.net‟,‟.blif‟,‟.netD‟,‟.are‟. The numbers of CLBs vary from circuit to circuit and range 

from tens to tens of thousands. In this project .net formal has been used to extract 

the information into a matrix format in MATLAB. 

3.4 Modeling of the problem 

 

From here onward all the literature has been written for e64 circuit but they are 

equally valid for any circuit given in „.net‟ format. This circuit contains 274 CLBs , 

65 inputs and 65 outputs (total 130 I/O pads). As it has 274 CLBs, it can be mapped 

to an 2D array of 17x17 CLBs with I/O pads present along its perimeter. The 

diagrammatic representation of the model with Cartesian co-ordinate system is 

shown in Fig. 4.1 
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CLBs locations were numbered from the bottom-most left CLB which goes to 289 at 

the top-most right side. Each I/O pad is bi-functional and can be programmed to act 

as either input or an output pin. To place the e64 circuit, we need to use 274 CLBs 

out of 289 available and 130 I/O pads out of 136 available I/O locations. 

3.5 Population and Particle 

 

In the placement problem we have to deal with placement of CLBs and I/O pads. As 

the location of both are not interchangeable because they cannot be physically 

assigned together. Therefore we have the following choices for defining swarm and 

applying PSO to them for better fitness. 

Figure 3-1 Diagrammatic representation of model in Cartesian system 
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1. Three separate PSO loops for CLBs , I-pads and O-pads 

2. Two PSO loops, one for CLBs and other for I/O-pads together 

According to our modeling, we can initialize the particle by assigning array of 

integers of suitable length. For a particle of CLB swarm, the particle looks like [1 2 

6 7 99 64 56…200 288, 15] whose size is 274 for e64 circuit. Similarly for a particle 

of I/O pad the array assignment might be [1 99 87 40 25 4 125...2 36] of size 130. If 

it was for I-pads alone, the arrays size would have been 65. 

3.6 Cost function 

 

VLSI circuits are generally optimized depending upon the requirement. for instance 

if speed is of prime importance, then the critical delay path should be shortest and 

the placement should be optimized accordingly compromising some different 

parameters such as area, congestion, or wire-length. 

For our project we have taken congestion and wire-length as cost function, so the 

optimized circuits will have minimum congestions and wire-length. Before going for 

implementation of PSO , the cost functions need to be explained in detail. 

3.6.1 Bounding Box[vpr] 

 

The wider routing channels of a FPGA should support those portions of the circuit 

that have more demands on the wiring resources. The relevant cost function should 

model the difficulty, albeit relative of routing connections in areas with different 

channel widths.  
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The summation is done over Nnets, the total number of nets. For each net i, bb(i) and 

bby(i) denote the horizontal and vertical spans of its bounding box, respectively. 

When the number of terminals for a net i exceed one, q(i) makes amends for the 

underestimation that bounding box model undertakes for connecting tnree or more 

terminals. The q(i) factor compensates for the fact that the bounding box wire 

length model underestimates the wiring necessary to connect nets with more than 

three terminals. Its value depends on the number of terminals of net i. 

This cost function penalizes placements which require more routing in areas of the 

FPGA that have narrower channels. The exponent, β, in the cost function allows the 

relative cost of using narrow and wide channels to be adjusted. β = 1 results in the 

highest quality placements[vpr]. 

For a bounding-box function, Cav is a constant, which we have taken as Cav= 100. 

Figure 3-2 Practical Implementation of Bounding Box function on MATLAB 
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3.6.2 Wirelength 

  

The straight-blocks distance between the CLBs or between I/O pads or between 

either of them is also known as the Manhattan Wirelength.  

Wirelength= ∑I,j(|xi-xj| + |yi-yj| )  

 

3.7 PSO Implementation-In focus  

 

PSO technique was implemented to get an optimized placement of e64. Both type of 

particle definitions, which is already mentioned in the problem modeling, were used 

to know which can give the best result.  

3.7.1 Three separate PSO loops for CLBs, I and O-pads 

In this type of particle definition CLBs, I-pads and O-pads have different swarms 

and their positions were optimized in three separate but consecutive PSO loops. The  

graphical modeling of the implementation can be understood from the following 

block diagram in Fig. 5-1.. 

Swarms of all the three types can be initialized and assigned to array of numbers of 

suitable length.  In e64, the arrays assigned to all these three type particles will be 

like the following, 

 

 

 

 

 

Initialize swarms 

 of CLB, I, O  

 

Run CLB_PSO 

 

Run I_PSO Run O_PSO 

Calculate Cost,Determine 

pbest, gbest 

 

Figure 3-3 Block Diagram detailing the process flow for the first PSO Implementation 
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A particle of CLB population= [1  6  5  78  12  125  200 ……145  56 ]1x274  (as there 

are 274 CLBs in e64). For initialization numbers are generated randomly from a set 

of [1,289] because the size of the array of CLBs for implementing the circuit is taken 

as 17x17 as mentioned before.  

Similarly a particle of I-pad= [1 26 34 78 120……..11 39]1x65 (65 I-pads in e64)  

And for an O-pad =[4 5 68 25 23 ……10 121 130]1x65 (65 I-pads in e64). For both I 

and O-pads initial numbers are generated from a set of numbers ranging from 

[1,136]. This is because all the four sides of the array of CLB has 17 bi-functional 

I/O pads which gives a total pool of 136 numbers.  

Velocity generation: 

The velocity equation used in this case is given by, 

v1=(w1*v(k,j)+c1*(pbest(k,j)-x1(k,j))*rand+c2*(gbest(k)-x1(k,j))*rand); 

In this case velocity is an array of numbers with array length equal to the length of 

the particle. So, for the particle of CLB, the velocity will be an array of length 274 

integers that means each element of the array of the particle will be changed after 

each iteration. 

[1 65 23 20…123 200 6 281] + [1 6 3 1…1 2 6 9] = [2 71 26 21…124 202 12 290] 

 

 

 Drawbacks: 

This method of optimization is erroneous. The sources of error are discussed below: 

CLB_old velocity CLB_new 
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It is evident from the velocity equation is that the velocity will come as a fraction. 

Also when the velocity is added to the CLB swarm, there is always a chance that 

the updated particle will not be a set of unique numbers. This condition in the PSO 

loop generates an array which might give a lower cost but is impractical because 

two or more same numbers in the array refers to the same location in the board 

which is physically impossible. 

Another problem arising because of separate treatment of the I and o-pads is that 

more than 2 I/O were assigned to a single position. In the model taken each I/O 

location can take maximum of two I/O pads. But as we were taking I and O in 

separate loops, same number can occur for I and O for more than 2 times. Which is 

physically not possible. This error can be seen in the simulation results, as there are 

lots of the I/O pads are remaining unused. This implies that many of the I/O pads 

are overlapped to a single location. 

3.7.2  Two separate PSO loops for CLB and I/O pads  

To avoid the problems in the previous method, we considered I/O together and 

assigned them with an array of size 130. Maximum two numbers in the array can 

be assigned physically to a single I/O slot on the FPGA board. 

IO swarm = [ 1 2 3 8 9 23 124 …45](1x130) 

This modification avoids the allocation of more than 2 I/O pads to a single slot on 

the board. 
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The further modification required is to avoid CLB overlapping. This is achieved by 

making the velocity same for all the individual elements in a single particle. 

 

 

 

 

 

The further modification required is to avoid CLB overlapping. This is achieved by 

making the velocity same for all the individual elements in a single particle.  The 

modified velocity equation is given by, 

v_c(j)=round(w(i)*v_c(j)+c1*rand*sum(pbest(n_in+n_out+1:n_in+n_out+n_clb,j)-

x3(:,j))/n_clb+c2*sum(gbest(n_in+n_out+1:n_in+n_out+n_clb)-x3(:,j))*rand/n_clb); 

But as the velocity is now calculated for a whole particle at the same time, a new 

problem of overshooting of numbers inside the particle arises. This problem is 

solved by introducing an overshooting and reallocation scheme which will be dealt 

in later section. 

3.8 Overshooting and Reallocation 

 

When the board positions for CLBs and I/O pads are optimized by iterative 

positioning through separate PSO loops, a discrepancy is observed- Each swarm 

Initialize swarms 

of CLB, IO  

 

Run CLB_PSO 

 

Run IO_PSO 

Calculate Cost, 

Determine pbest, 

gbest 

  Figure 3-4 Block Diagram detailing the process flow for the second PSO Implementation 
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particle, i.e. all the CLB and I/O positions as a whole after velocity update 

consequent of each iteration overshoots. A certain number of X positions in excess of 

the fifteen unoccupied for “e64.net” are indicated as „ideal optimized positions‟. The 

same number of positions are rejected from the front of the grid. The movement of 

the particle elements can be construed to be similar to a cyclic movement whereby 

the vacant positions „move‟ through the grid positions, i.e. stored in an array. 

CLB € [min, max] 

(CLB + V) € [min + V, max + V] 

No. of overshoot < V AND No. of rejections > V 

For e64.net , 

X= [1, 8, 9, 14, 15. 16 … 280] 

     274 CLB positions 

After a particular iteration, V=20 and therefore Xnew, 

Xnew = [21, 28, 29, 34, 35, 36…300] 

 

 

 

 

1 
280 21 

300 

V=20 

1 20 289 300 



23 
 

Solution: 290=289 + 1  x(j) > 289 

x(j)= min – (x(j)- 289) 

For example, CLB = [1, 8, 9…280] 

V= -20; 

CLBnew = [-19, -12…260] 

[-19…-12]   [261,…289] (reallocation) 

Now, x(j)= max + 1 – x(j) 

If x(j) > 289, 

x(j) = min –(x(j) – 289) 

If x(j) < 1, 

x(j) = max +1 - x(j) 

3.9  local minima avoidance 

If for a particularly large number of iterations, the cost function remains the same, 

it is said to have converged. If this happens for an unusually small number of 

iterations, it may be assumed to have prematurely converged. This could be in the 

case of insufficient number of iterations or in some cases, due to randomness of the 

program, the optimization terminates at some local minima.  
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All particles move towards local minima. For avoidance of local minima, slow fall 

method is used. In this technique, a random velocity is given to each pbest and 

iterated till the value of pbest is reduced.  

 

 

 

 

 

 

 

 

 

 

 

After we get a reduced pBest, we can replace the previous pBest with the newer 

one. The random direction of velocity helps the PSO program to avoid the local 

pBest and explore a lower one to replace it. 

The randomness of the slow fall  velocity comes into picture because the method 

doesn‟t generate the velocity depending on the particle‟s velocity or the swarm‟s 

overall performance. Hence, its nature is different from the regular PSO. 

Local Minima 

Cost 

Further 

Decreased 

Cost 

No. of iterations 

 

Figure 3-5 Convergence graph with local minima avoidance 
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After we get a better pBest, we replace it and we also update gBest if required. The 

number of iterations after which particles go into the slow fall method depends on 

the total number of iterations in the overall program. 

 

Slow_fall = iter X f 

(f) is a fraction € [0, 1] 

3.10 Effect of acceleration constants 

C1  and C2  in the velocity equation are known as acceleration factor. They have a 

huge effect on rate of convergence. C1 is one of the co-efficient of the difference 

between present particle location and its pbest. Hence increasing its value will 

lessen the friction for the movement of the particle in its neighboring space which 

leads towards randomness to some extent. Decreasing its value ensured a very 

rigorous exploration of the neighboring space. C2 is the co-efficient of the difference 

between the particle position and gbest. Increasing or decreasing its value will 

affect the friction for the particle to move in the whole solution space w.r.t the gbest. 

if the C2  value is high, particle will try to move faster towards the gbest.  

There should be a balance between the both constants for a faster convergence. It is 

also seen that the values should not go beyond 2.5, after which PSO becomes 

unstable due to very high velocity. Simulations have been done varying the values 

of C1 and C2 in a range of 1 to 2.5 while both increase at the same time and while 

one increases but the other decreases. And it‟s found that C1 = C2 = 2.5 gives the 

best result. 
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 4. SIMULATION RESULTS AND DISCUSSION 

 

Generating usable Netlist: 

MATLAB was used as  the platform for optimization of the placement and routing 

using PSO in FPGA .For implementing the optimization the netlists were needed to 

be in a matrix format. The netlist available in .net format has the following syntax: 

element_type_keyword blockname 

pinlist: net_a net_b net_c ... 

subblock: subblock_name pin_num1 pin_num2 ... # Only needed if a clb 

example: 

 

.input i_9_ 

pinlist: i_9_  

 

.output out:o_3_ 

pinlist: o_3_  

 

.clb n_n860  # Only LUT used. 

pinlist: [1867] [1869] [6474] [6475] n_n860 open  

subblock: n_n860 0 1 2 3 4 open 

 
 
A circuit element is created by specifying a keyword at the start of a line, followed 

by the name to be used to identify this block. The line immediately below this 

keyword line starts with the identifier pinlist: and then lists the names of the nets 

connected to each pin of the logic block or pad. Input and output pads (.inputs and 

.outputs) have only one pin, while logic blocks (.clbs) have as many pins as the 

architecture file used for this run of VPR specifies. The first net listed in the pinlist 

connects to pin 0 of a clb, and so on. If some pin of a clb is to be left unconnected, the 
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corresponding entry in the pinlist should specify the reserved word open instead of a 

net name. 

Subblocks are not necessary for gathering information regarding the 

interconnection between CLBs, input-pads and output-pads. So, these lines in the 

original .net file can be neglected for generating .mat matrix netlist. 

 

 

 

 

 

 

 

 

 

For example in the following case: 

.clb clb0 

Pinlist: clb1 clb2 clb3 clb4 clb5 open 

A net can be defined by all the connections madefrom a particular pin to the other 

pins of differentCLBs or output pads which are required to complete the circuit. The 

net is  named after the CLB to whichthe source pin belongs to. Therefore a net can 

start  either from the output pin of a CLB or any input pad and similarly a net can 

terminate at any of the input pin of a CLB or output pads.The last two connections 

Figure 4-1: An individual CLB and its 

connections  

Figure 4-2: An individual net 
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under the pinlist head specify the output pin name and the global clock connection. 

For the purposes of placement optimization, this information was irrelevant. 

Therefore in the final matrix, each row represents a net and the columns represent 

all the possible termination points for a net. An existing connection is marked by „1‟ 

otherwise a „0‟ is written. The following table shows the orientation of the final 

matrix: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 0 1 0 1 0 1 0 

1 0 1 0 0 1 0 1 

0 1 0 1 1 0 0 1 

0 0 1 0 0 1 0 1 

1 0 0 1 0 1 1 0 

1 1 1 0 1 0 0 0 

0 0 1 0 1 0 1 0 

Input-pads 

Output-pads CLBs 

CLBs 

Figure 4-3: Connection matrix or .mat format extracted from netlist via MATLAB 
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Results with reallocation technique: 

 

 

 

 

: 

 

 

 

Initial Bounding Box Cost value-              58.5 

Converged Bounding Box Cost value -   55.6  

Results with local minima avoidance: 

 

 

 

 

 

 

Figure 4-4 Simulation results without minima avoidance 

Figure 4-5 Simulation Results with minima avoidance 
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It‟s observed that with this technique, the convergence is faster and its achieving 

almost similar result with lesser number of iterations. 

Effect of C1 and C2: 

 

We are getting the best result at c1=c2=2.5 

C1 C2 No. of iteration cost 

1 2.5 50 55.57 

1.2 2.3 50 55.6400 

1.4 2.1 50 55.2100 

1.6 1.9 50 55.4300 

1.8 1.7 50 55.4300 

2.0 1.5 50 55.38 

2.2 1.3 50 55.38 

1.1 1.1 50 55.6900 

1.3 1.3 50 56.1300 

1.5 1.5 50 55.6900 

1.7 1.7 50 55.4300 

1.9 1.9 50 55.4300 

2.1 2.1 50 55.9300 

2.3 2.3 50 56.1200 

2.5 2.5 50 54.83 
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5. CONCLUSION & SCOPE FOR FUTURE WORK 

 

 With proper choice of acceleration constants MCNC circuit placements 

can be optimized using PSO. The use of local minima avoidance increases 

the rate of convergence. 

 Till now only the placement problem has been dealt, after this Routing 

the interconnection in between the CLBs and I/Os to achieve the desired 

functionality should be done. Routing is also an NP-Complete class of 

problem and need to be optimized. 

 After the optimization of both placement and routing, the circuit can be 

implemented on to a read FPGA and tested for the desired result. 

 Generally circuits are optimized depending upon the requirement for a 

specific type of application. But there can also be a trade off between 

different parameters in the optimization process so that the circuits 

performance can be further improved. 
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