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Inflammatory bowel disease (IBD) is a chronic, relapsing gastrointestinal (GI)

disorder characterized by intestinal inflammation. The etiology of IBD is

multifactorial and results from a complex interplay between mucosal

immunity, environmental factors, and host genetics. Future therapeutics for GI

disorders, including IBD, that are driven by oxidative stress require a greater

understanding of the cellular and molecular mechanisms mediated by reactive

oxygen species (ROS). In the GI tract, oxidative stressors include infections and

pro-inflammatory responses, which boost ROS generation by promoting the

production of pro-inflammatory cytokines. Nuclear factor kappa B (NF-kB) and
nuclear factor erythroid 2–related factor 2 (Nrf2) represent two important

signaling pathways in intestinal immune cells that regulate numerous

physiological processes, including anti-inflammatory and antioxidant activities.

Natural antioxidant compounds exhibit ROS scavenging and increase antioxidant

defense capacity to inhibit pro-oxidative enzymes, which may be useful in IBD

treatment. In this review, we discuss various polyphenolic substances (such as

resveratrol, curcumin, quercetin, green tea flavonoids, caffeic acid phenethyl

ester, luteolin, xanthohumol, genistein, alpinetin, proanthocyanidins,

anthocyanins, silymarin), phenolic compounds including thymol, alkaloids such

as berberine, storage polysaccharides such as tamarind xyloglucan, and other

phytochemicals represented by isothiocyanate sulforaphane and food/spices

(such as ginger, flaxseed oil), as well as antioxidant hormones like melatonin that

target cellular signaling pathways to reduce intestinal inflammation occurring

with IBD.

KEYWORDS

antioxidants, ulcerative colitis, Crohn’s disease, IBD, oxidative stress, flavonoids,
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1 Introduction

Inflammatory bowel disease (IBD) in humans comprises at least

two chronic inflammatory intestinal disorders, defined as Crohn’s

disease (CD) and ulcerative colitis (UC). Lesions of CD may occur in

the small or large intestine but most commonly involve the colon and

rectum as discontinuous areas of transmural inflammation. In

contrast, UC affects only the colon and rectum continuously, with

inflammation restricted to the mucosa (1). The clinical course of CD

is associated with intestinal granulomas, strictures, and fistulae, while

these lesions are absent in UC. The underlying mechanism for IBD is

believed to result from dysregulated immune responses to

environmental factors and the intestinal microbiota in genetically

susceptible people (2). These disorders impact millions of people

worldwide, with the prevalence of disease in Americans expected to

rise by 229% by 2030, relative to the number of diagnoses in 2010 (3).

Scientific evidence that increased levels of reactive oxygen species

(ROS) but decreased levels of antioxidants contribute to disease

pathogenesis establishes a link between ROS and IBD (4, 5). The

intestinal mucosa is lined with an epithelial cell monolayer which

separates the anaerobic lumen from the highly metabolic lamina

propria. Therefore, the intestinal epithelial cells function under a

physiological oxygen gradient that is relatively steep (reaching from

physiologic hypoxia to physioxia) compared to other cell types.

Moreover, during active IBD, there is a significant metabolic shift

towards hypoxia seen with mucosal inflammation (pathologic
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hypoxia). In vitro and in vivo studies have demonstrated that the

activation of the transcription factor hypoxia-inducible factor (HIF)

functions as a warning signal in several murine disease models. For

example, HIF-1, which is increasingly stabilized in inflammatory

lesions, protects against inflammation and IBD by triggering the

transcription of several genes that allow the intestinal epithelial cells

to operate as an efficient barrier (4). While HIF-1 facilitates adaptive

responses to oxidative stress (OS) via nuclear translocation and gene

expression regulation, it is well known that mitochondrial HIF-1a
protects against OS-induced apoptosis. Several studies have shown

that nuclear factor erythroid 2–related factor 2 (Nrf2) helps the anti-

inflammatory process by coordinating the recruitment of

inflammatory cells and regulating gene expression via the

antioxidant response element (ARE) (Figure 1) (6). A decrease in

the expression of antioxidant/phase II detoxifying enzymes, such as

UDP-glucurosyltransferase 1A1, NAD(P)H-quinone reductase-1,

heme-oxygenase-1, and glutathione S-transferase Mu-1 was linked

to the increased severity of colitis in Nrf2-deficient mice (7), while

Nrf2 overexpression was reported to improve UC (8).
2 Concepts of cellular and
ROS damage

The intestinal mucosa in people with IBD (e.g., CD) is typically

infiltrated with numerous inflammatory cells, including
FIGURE 1

Antioxidant and anti-inflammatory effects of phytochemicals and hormones. Anti-inflammatory mechanisms involve the modulation of nuclear
factor-kappa B (NF-kB) pathways, such as the downstream pro-inflammatory effects mediated by Toll-like receptor (TLR) activation. Activation
(release of IkB inhibition) and nuclear translocation of NF-kB inhibition, which result in the transcription of several pro-inflammatory genes, can be
inhibited by several phytochemicals and hormones (left panel). Kelch-like ECH-associated protein-1 (Keap1)-induced activation and nuclear
translocation of nuclear factor erythroid 2-related factor 2 (Nrf2), resulting in an increased expression of antioxidant enzymes (AOEs), can also be
inhibited by phytochemicals and hormones (right panel). In the presence of OS, Keap1 relinquishes its binding to Nrf2, thereby enabling the
translocation of Nrf2 into the nucleus. Subsequently, Nrf2 forms a complex with small Maf (sMaf) proteins, resulting in the formation of Nrf2/sMaf
heterodimer, which then binds to the Antioxidant Response Element (ARE) located on different stress-related gene targets. The figure was produced
with BioRender (www.biorender.com; accessed on 17th July 2023). Resveratrol (RSV); Curcumin (CUR); Quercetin (QCT); Ginger (GIN); Flavonoids
(FLA); Caffeic acid phenethyl ester (CAPE); Luteolin; (LUT); Xanthohumol (XN); Genistein (GEN); Berberine (BER); Flaxseed oil (a-linolenic acid) (FSO);
Sulforaphane (SUL); Tamarind xyloglucan (TXG); Alpinetin (ALP); Proanthocyanidins (PA); Anthocyanins (ANTH); Silymarin (SIL); Thymol (THY);
Melatonin (MEL); ubiquitin (Ub); phosphorylation (P); IkB kinase (Ikk); Mammalian NF-kB family members: NF-kB1 (p50), c-Rel and RelA (p65).
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neutrophils, macrophages, and lymphocytes (9, 10). Uncontrolled

immune responses are driven by the excessive activity of effector T-

lymphocytes and their increased production of pro-inflammatory

cytokines (e.g., tumor necrosis factor-alpha (TNF-a), interleukin
(IL)-1b, and IL-6) and chemokines, which, along with other

inflammatory mediators, cause tissue damage and perpetuate the

inflammatory response (11). Typically, the equilibrium between

proinflammatory cytokines (such as TNF-a, IL-1, IL-6, IL-8, IL-17,
and IL-23) and anti-inflammatory cytokines, such as IL-5, IL-10,

IL-11, and transforming growth factor b (TGF-b) is closely

regulated within the GI mucosa (12). The pathogenesis of IBD is

characterized by an imbalance between T helper (Th) cells and

regulatory T cells, specifically the impaired tolerance of regulatory T

cells. While CD is distinguished by inflammation mediated by Th1

cells, which results in the overproduction of IL-12, IL-17, and IL-23,

UC is marked by cytokines such as IL-4, IL-5, IL-10, and IL-13,

which are produced by Th2-type T cells (13).

The active inflammatory process is coupled with the generation

and release of ROS from infiltrating immune cells. Principal ROS

produced by inflammatory cells include superoxide (O2
•–),

hydroxyl radical (·OH), hydroperoxyl radical (HO2·), nitric oxide

(NO), and singlet oxygen (1O2) (14). Furthermore, ROS upregulates

genes involved in innate and adaptive immune responses to amplify

mucosal inflammation (12). ROS and other inflammatory markers

released in the inflamed mucosal environment cause progressive

cellular and molecular damage, resulting in increased tissue

destruction. The most common cellular targets for ROS include

cell membrane lipids, proteins, and DNA which causes lipid

peroxidation (LPx), enzymatic dysfunction, and DNA damage,

respectively (15–17). OS in IBD occurs due to an imbalance

between oxidant and antioxidant substances in affected tissues

(18). This review also evaluates the role of antioxidants and

hormones in the crosstalk between OS and inflammation in IBD.
3 Clinical studies in companion
animals

Canine chronic inflammatory enteropathies (CIE) refer to a

group of intestinal disorders characterized by persistent or

recurrent gastrointestinal (GI) signs and variable intestinal

inflammation (19, 20). The prevalence of CIE in referral

veterinary practice is estimated at 2%, and it is generally

subclassified by the response to different therapeutic trials (20).

The different disease phenotypes include food-responsive

enteropathy (FRE), antibiotic-responsive enteropathy (AE),

steroid-responsive enteropathy (SRE), often termed idiopathic

IBD, and nonresponsive enteropathy (NRE) (20–22). While the

cause of canine CIE is unknown, it is also recognized as a

multifactorial disorder resulting from a complex interplay among

the environment (e.g., diet, microbiome), mucosal immunity, and

host genetics that initiates and drives chronic intestinal

inflammation, like human IBD (19).

There are few clinical studies evaluating the role of OS in dogs

with CIE. In one case-control study, colonic lavage analytes as

markers of mucosal inflammation were compared between healthy
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dogs and dogs with biopsy-confirmed idiopathic IBD (23).

Polyethylene glycol solution was administered into the colon via

rectal balloon catheter prior to colonoscopy and was then analyzed

for total protein, IgG, and nitrite concentrations and

myeloperoxidase (MPO) activity. Results showed that mean

nitrite and IgG concentrations were higher in lavage samples

from idiopathic IBD dogs compared with samples from healthy

dogs. Serum metabolite profiles have also demonstrated a potential

relevance of OS in the pathogenesis of dogs affected by idiopathic

IBD (24). Using an untargeted metabolomic approach, gluconic

acid lactone and hexuronic acid increased in the serum of idiopathic

IBD dogs when compared to samples from healthy dogs. Gluconic

acid is an oxidized derivative of glucose that can scavenge free

radicals, and hexuronic acid is a biologically active form of vitamin

C that functions as an antioxidant by donating electrons.

Interestingly, there were no significant changes in serum

metabolite profiles in dogs with idiopathic IBD following medical

therapy, despite clinical improvement.

Several other studies have investigated serum biomarkers of OS

in dogs with CIE at diagnosis and in response to medical treatment.

In one study, trolox equivalent antioxidant capacity (TEAC), cupric

reducing antioxidant capacity (CUPRAC), ferric reducing ability of

the plasma (FRAP), total thiol concentrations, and paraoxonase-1

(PON1) activity were evaluated in serum to determine the

antioxidant response in dogs with idiopathic IBD. Additionally,

ferrous oxidation-xylenol orange (FOX), thiobarbituric acid

reactive substances (TBARS), and ROS concentrations in serum

were determined (25). The mean concentrations of all antioxidant

biomarkers except FRAP were lower, and the oxidant markers were

higher in the sera of dogs with idiopathic IBD than in healthy

controls. Another study showed lower serum fatty acid

concentrations in dogs with CIE than in healthy dogs, indicating

dysregulation of both pro-inflammatory (arachidonic acid and

cyclooxygenase pathways) and anti-inflammatory (omega-3

essential fatty acids) mediators (26). Perturbations in these

mediators in the face of chronic intestinal inflammation are a

recognized feature of IBD in people (27).

Differences in systemic phospholipids were reported in

another study involving dogs with idiopathic IBD and FRE (28).

Overall, disease severity and treatment (e.g., elimination diet alone

for FRE versus elimination diet and immunosuppressive dose of

prednisolone for idiopathic IBD) were the most significant

variables affecting phospholipid profiles at diagnosis. After treatment,

a shift of phospholipid species from phosphatidylcholine to

lysophosphatidylcholine was observed for both disease groups,

presumably caused by an increase in anti-inflammatory lipid

mediators (lipoxins and resolvins). The effects of dietary supplements

and diet therapy on metabolomic changes in dogs with CIE have been

investigated in other treatment trials. In one controlled trial, dogs with

idiopathic IBD were randomized to treatment with either a hydrolyzed

diet alone or a hydrolyzed diet supplemented with prebiotics (PRE) and

glycosaminoglycans (GAG) (29). Results indicated that the majority of

metabolomic changes involved several different lipid classes

(glycerophospholipids, sphingolipids, and di- and triglycerides) and

that both treatments increased beneficial metabolites in serum lipid

profiles. In addition, co-treatment with PRE + GAG was associated
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with the greatest increase in lipid metabolites suggesting a possible

additional beneficial effect in dogs with idiopathic IBD. Another

randomized controlled trial in dogs with idiopathic IBD involved

combination therapy with hydrolyzed diet and oral chondroitin

sulfate + PRE versus hydrolyzed diet alone (30). The supplement

group showed decreased serum levels of paraoxonase-1 after 60 days of

treatment, whereas the placebo group showed reduced serum total

antioxidant capacity after 120 days. A decrease in the intestinal

histologic score was observed only in the supplement group post-

treatment. Additionally, breed-specific changes in the fecal

metabolomic profile have been reported in Yorkshire Terriers, which

show an increased susceptibility to CIE and protein-losing enteropathy.

Here, changes in bile acid, fatty acid, and sterol metabolism that only

partially recovered with successful treatment were observed (31).

While most studies have investigated the pathomechanisms of

OS in chronic gastroenteritis, other studies have evaluated the role

of antioxidants in acute enteropathy and in mitigating OS induced

by surgery. In one study, a comparison of the OS status of dogs with

uncomplicated acute diarrhea (AD) was compared to healthy

controls (32). Both cohorts were screened for clinical and

laboratory abnormalities as well as routine redox indices (reactive

oxygen metabolites [dROMs], serum antioxidant capacity [SAC],

and the oxidative stress index [OSi]). Dogs with AD showed

increased levels of dROMs and OSi values (calculated as the ratio

between dROMs and SAC) as compared to control indices.

Summarizing, different metabolomic studies in dogs with CIE

also show disturbances in serum and fecal metabolites reflective of

OS at diagnosis. Notably, disturbances in lipid metabolism appear

to be a common denominator across multiple studies. Moreover,
Frontiers in Endocrinology 04
treatment using a hydrolyzed diet with or without different dietary

supplements improves several different measures of OS in most

animals showing clinical remission. Given the importance of these

metabolites in mediating chronic intestinal inflammation,

additional well-designed and sufficiently powered clinical trials in

dogs with CIE are warranted.
4 Oxidative stress and antioxidant
defenses

The most prevalent antioxidant signaling pathway is the Kelch-

like epichlorohydrin-related protein-1 (Keap1)/Nrf2-ARE signaling

pathway (33, 34). As an inactive compound with its cytosolic

repressor, Keap1, Nrf2 is sequestered in the cytoplasm. In

response to OS that oxidizes two SH groups, Nrf2 is dissociated

from the inhibitory protein Keap1 and translocated to the nucleus,

where it binds ARE to activate the transcription of antioxidant

genes (33, 34) (Figure 1).

The production of ROS is a natural consequence of biological

metabolism (Figure 2). The beneficial effects of ROS are seen in a

variety of physiological processes at low and moderate

concentrations, including the killing of invading pathogens, the

healing of wounds, and the repair of damaged tissues. Aerobic

organisms possess a wide range of antioxidants that are critical to

their survival. Antioxidants can be classified as either enzymatic or

non-enzymatic, depending on their functions. While the

antioxidant defense enzyme superoxide dismutase (SOD) converts

the superoxide anion to hydrogen peroxide, catalase (CAT),
FIGURE 2

Overview of cellular reactive oxygen species (ROS) generation and their scavenging by antioxidant defense system (AODS). Supplemental
antioxidants can help lower oxidative stress by scavenging free radicals, blocking enzymes that produce ROS, or stimulating AODS enzymes and
molecules. The figure was produced with BioRender (www.biorender.com; accessed on 17th July 2023). Superoxide dismutase (SOD); catalase (CAT);
glutathione peroxidases (GPx); glutathione reductase (GR); reduced glutathione (GSH); oxidized glutathione (GSSG); glucose-6-phosphate
dehydrogenase (G6PD).
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peroxiredoxins (Prxs), and glutathione peroxidases (GPx) are

examples of antioxidant enzymes (AOEs) that catalyze the

breakdown of hydrogen peroxide (35, 36). Recent studies

investigating refined kinetic measurements show that Prxs

remove more than 90% of cellular peroxides in comparison to

other antioxidant defense enzymes like CAT and GPx (35). Copper

and iron ion-sequestering molecules, heme oxygenase, lipoic acid,

uric acid, coenzyme Q, and bilirubin are all examples of non-

enzymatic antioxidants present in vivo (37). In the non-enzymatic

antioxidant defense system, glutathione (GSH) plays a crucial

function as the most abundant cytosolic thiol. Glutathione can

protect cells from free radicals and pro-oxidant damage because it

also serves as a cofactor for other antioxidant and detoxifying

enzymes, including GPx, glutathione S-transferases (GST), and

glyoxalases. Thioredoxin (Trx) serves as a co-substrate molecule

for Prxs, and its reducing capabilities are essential to the

antioxidative activities of Prxs. Trx and GSH need glutathione

reductase (GR) and thioredoxin reductase (TR), in addition to

NADPH, to retain their reducing capabilities (38). During the

process of GST-mediated detoxification of electrophilic

compounds and xenobiotics, GSH functions as a cofactor (39).

Following detoxifying interactions of vitamin E with lipid peroxyl

radicals (LOO·), GSH can replenish the vitamin E pool (40).

Antioxidants that can regenerate their original qualities through

interactions with other antioxidants are referred to as an

“antioxidant network” (41). Growing research suggests that

pathological states characterized by elevated ROS levels are

associated with diminished enzymatic and non-enzymatic

antioxidant activity (34, 39, 42–59). The signaling pathways of

nuclear factor kappa B (NF-kB), mitogen-activated protein kinase

(MAPK), and signal transducer and activator of transcription 3

(STAT3) are among the major targets that can be influenced by

ROS. Therefore, these pathways play a crucial role in defending

against the effects of OS and can be used to identify antioxidant food

ingredients or to develop therapeutics for diseases such as IBD.

Myeloperoxidase is frequently overexpressed in a variety of

inflammatory disorders (60, 61), including chronic gastroenteritis.

As a lysosomal enzyme, MPO is secreted into the phagosome of

neutrophils after degranulation, where it catalyzes the formation of

strong oxidants, such as hypohalous acid (HOX; X = Cl or Br) with

potent antibacterial properties. When generated at an improper

location, time, or concentration, HOX can potentially damage host

tissue. MPO-mediated damage is associated with a number of

disorders in people, including IBD (60, 62). High leukocyte

infiltration in the inflamed mucosa generates high levels of ROS,

which triggers OS and causes cellular and tissue damage seen with

inflammation (63).
5 ROS generation in the
gastrointestinal tract

The GI tract is one of the primary sources of ROS. Although

epithelium acts as a physical and antimicrobial barrier, ingested

materials and enteric pathogens can promote inflammation by

stimulating the production of proinflammatory cytokines, which
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further contribute to OS. Oxidative stress is a contributing factor in

the development of several GI pathological disorders, such as

gastroduodenal ulcers, GI cancer, and IBD. Acute and chronic GI

disorders in humans and animal models are characterized by

increased ROS production or decreased counteracting antioxidant

mechanisms, both of which disrupt redox homeostasis (12, 32,

64, 65).

Oxidative stress-induced damage in chronic intestinal disorders

is associated with mucosal infiltration by activated leukocytes,

which produce excessive ROS that overwhelm the tissue’s

antioxidant defenses and perpetuate or exacerbate mucosal

inflammation. Several ROS generated by unstable types of oxygen,

including the superoxide ion, hydrogen peroxide, and hydroxyl

radicals, are the principal pro-oxidant molecules (12).

The intestinal epithelium has been acknowledged as a crucial

factor in the development of IBD due to its dual nature of exhibiting

both immune and organ-specific functions. In the context of

mucosal inflammation, the activation of NADPH oxidase (NOX)

and inducible nitric oxide synthase (iNOS) by inflammatory

cytokines leads to the production of superoxide and nitric oxide

by intestinal epithelial cells (IECs), neutrophils, and macrophages

(12). IECs generate an increased amount of ROS/RNS through the

activation of NOX and iNOS. The presence of excessive ROS has the

potential to cause harm to cytoskeleton proteins, which may modify

tight junctions to increase intestinal permeability. Ultimately, this

disrupted intestinal epithelial barrier leads to further mucosal

inflammation (66). Thus, the initiation of IBD can be attributed

to inflammation of the GI tract caused by OS. The microvascular

network encircling the epithelial cells can attract inflammatory

mediators causing more tissue damage and an escalation of

intestinal inflammation. Morphologic lesions associated with

intestinal inflammation include goblet cell depletion, decreased

production of mucous, development of ulcers and/or hyperplasia

of colonic crypt cells (12, 67).

Both ROS and RNS have been implicated in IBD pathogenesis,

with a particular role in CD initiation and progression (68). With

inflammation, the production of ROS by leukocytes and monocytes

increases along with prostaglandins and leukotrienes (e.g.,

eicosanoids derived from arachidonic acid metabolism) (69, 70).

ROS in the GI tract is produced by infiltrating neutrophils and

macrophages, as well as IECs. Elevated blood levels of 8-hydroxy-

2′-deoxyguanosine (8-OHdG) may serve as a biomarker for OS in

people with IBD (13). In murine colitis models, systemic depletion

of macrophages or neutrophils results in decreased ROS/RNS

production, reduced concentrations of proinflammatory

cytokines, and mitigation of intestinal inflammation (71).

These ROS promote cell damage and harm tissue integrity by

preventing the accumulation of antioxidant defenses in host cells.

For example, oxidative damage is observed in the intestinal tissues

and peripheral blood leukocytes of patients with CD (72).

Moreover, CD patients have lower levels of antioxidant vitamins

A, C, E, and beta-carotene in their blood and intestinal mucosa, as

well as reduced activity of key cellular AOEs such as glutathione

peroxidase and SOD (73). Oxidative stress and redox signaling

pathways, especially that involving NF-ĸB, are also involved in

active IBD (Figure 1). Since the redox status of mucosal glutathione
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is associated with inflammation and disease progression, impaired

mucosal antioxidant defenses likely contribute to the development

of UC (74).

Chronic NF-ĸB stimulation promotes cellular infiltration and

mucosal inflammation by increasing the transcription of

proinflammatory cytokines (e.g., IL-6, IL-8, IL-16, and TNF-a)
and by degrading the intestinal barrier through increased apoptosis

of intestinal epithelial cells (Figure 3) (75), up-regulation of

metalloproteinases which digest mucosal cells, and the release of

ROS metabolites that activate NF-ĸB to further impair barrier

stability (76). Matrix metalloproteinases (MMPs), a disintegrin

and metalloproteinase (ADAMs), and tissue inhibitors of

metalloproteinases (TIMPs) are involved in the regulation of the

inflammatory response (77). The intestinal mucosa of IBD patients

demonstrates an up-regulation of MMPs and ADAM17 (TNF-a
converting enzyme; TACE), which is commonly correlated with

disease severity but is not accompanied by an up-regulation of

TIMP (78). It seems possible that the expression of different MMPs

in IBD is affected by the imbalance between oxidants and

antioxidants, given the importance of OS in the etiology of the

disease (79). In addition to normalizing the intracellular redox state,

antioxidants directly influence the regulation of MAPK and

transcription factors and can reduce the production of MMPs,

restoring their levels to normal (79).

One of the well-established signaling pathways that play a vital

role in the modulation of mucosal immunological tolerance relevant
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to the pathogenesis of IBD is the Janus kinase/signal transducer and

activator of transcription (JAK/STAT) system (80). To ensure

effective intestinal immunity, the JAK/STAT pathway modulates

the proportions of effector to regulatory T cell numbers, intestinal

epithelial cells and myeloid cells in the mucosa. In IBD, pro-

inflammatory cytokines deliver their signal through cytoplasmic

JAKs, which, once phosphorylated, associate with another class of

cytoplasmic proteins called STATs. Subsequently, STATs are

phosphorylated and translocated into the nucleus, where they

enhance the transcription of target genes (including TGF-b, TNF-
a, IL-2, IL-6, IL-8, MMP9, Intercellular Adhesion Molecule 1

(ICAM-1/CD54), STAT1, and STAT3) (81).

6 Role of antioxidants for IBD-related
therapeutic applications and
hormonal intervention

Oxidative/nitrosative stress is a significant pathophysiologic

factor that plays a role in the initiation and progression of IBD.

Overproduction of ROS is stimulated, and consequently, OS is

triggered during inflammation because of the large number of

cytokines and chemokines secreted by inflammatory cells.

Considering this, therapeutic interventions incorporating

substances possessing antioxidant and anti-inflammatory

properties may be considered. Multiple antioxidant therapeutic
FIGURE 3

Immune responses in IBD and anti-inflammatory effects of phytochemicals and hormones. Whereas the physiologic state of the gastrointestinal (GI)
immune system is dominated by immune tolerance, which maintains homeostatic balance, disturbances with IBD are associated with an
exaggerated (i.e., pro-inflammatory) immune response, intestinal dysbiosis, and compromised intestinal barrier function. Pro-inflammatory mediators
can perpetuate and exacerbate these dysregulated immune responses, while several phytochemicals and hormones can shift this imbalance toward
homeostasis. The figure was produced with BioRender (www.biorender.com; accessed on 17th July 2023). Resveratrol (RSV); Curcumin (CUR);
Quercetin (QCT); Ginger (GIN); Flavonoids (FLA); Caffeic acid phenethyl ester (CAPE); Luteolin; (LUT); Xanthohumol (XN); Genistein (GEN); Berberine
(BER); Flaxseed oil (a-linolenic acid) (FSO); Sulforaphane (SUL); Tamarind xyloglucan (TXG); Alpinetin (ALP); Proanthocyanidins (PA); Anthocyanins
(ANTH); Silymarin (SIL); Thymol (THY); Melatonin (MEL); interferon-gamma (IFNg); tumor necrosis factor-alpha (TNF-a); transforming growth factor b
(TGF-b); interleukin (IL). Naive CD4 T cells differentiated Th1, Th17, Tfh (follicular T helper), and Treg (T regulatory) subsets.
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strategies are being investigated because of the importance of OS in

the pathophysiology of IBD to eliminate ROS, enhance AOE

activities, and inhibit abnormal redox signaling (Figure 2).

Colonic malondialdehyde (MDA) level rises because of OS, LPx,

and free radical chain reactions that damage the intestinal mucosal

barrier and activate inflammatory mediators. The use of

antioxidants in people with uncomplicated GI disorders has been

proposed as a potential alternative therapy to the use of anti-

inflammatory/immunomodulatory drugs (82). The aim of

antioxidant therapies is to mitigate the adverse effects of

traditional treatments and to enhance the patient’s quality of life.

However, the safety of synthetic antioxidants has been a subject of

debate over time, despite their extensive utilization as a viable

alternative to natural antioxidants (83–85). Numerous studies

have documented a correlation between the prolonged

consumption of synthetic antioxidants and certain health

problems, such as GI disorders and increased cancer susceptibility

(83–85). The utilization of natural antioxidants as a substitute for

synthetic products is a noteworthy strategy, given that they are

employed within the confines of regulatory thresholds (85).
6.1 Phenolic and polyphenolic compounds

Flavonoids, phenolic acids, lignans, and stilbenes are examples

of polyphenols, a family of phytochemicals found in many plant

diets. A growing body of research has demonstrated that natural

polyphenols effectively mitigate the severity of intestinal

inflammation and OS in the early stages of IBD (82, 85–89).

Polyphenol-rich diets may ameliorate the pathophysiology of

disorders where excessive production of ROS plays a role in

disease progression (82). The phytochemicals that inhibit Toll-

like receptor 4 (TLR4) activation were shown to cause reduced

lipopolysaccharide (LPS)-mediated expression of cyclooxygenase-2

(COX-2), NF-kB, and pro-inflammatory cytokines (Figure 1;

Supplementary Table 1). Numerous studies have shown the

efficacy of phytochemicals against TLR4-mediated inflammation

(Figure 1) (137, 138). Flavonoids such as quercetin, catechin, and

silymarin have proven therapeutic efficacy in the treatment of IBD

(Figure 3) (139, 140). Here, they operate as effective antioxidants

and cellular modulators of the protein kinase and lipid kinase

signaling pathways that drive chronic intestinal inflammation

(139, 140). Dogs with idiopathic IBD also have up-regulated

activity of the JAK/STAT pathway marked by phosphorylated

STAT3 (pSTAT3) overexpression (141). Numerous studies have

demonstrated that consuming antioxidants found naturally in

plants can neutralize harmful free radicals and protect against

certain diseases.

6.1.1 Resveratrol
The polyphenol resveratrol (RSV, trans-3,5,4’-trihydroxystilbene)

is found in grapes, soybeans, berries, nuts, and pomegranates, among

other natural sources (142). In rodent models of IBD, the antioxidant

potential of RSV has been investigated. In one trinitrobenzene

sulphonic acid (TNBS)-induced colitis study, pretreatment of rats
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with RSV reduced histologic inflammation and MDA levels but

increased GPx activity compared to markers in the TNBS and

vehicle groups (91) (Supplementary Table 1).

MPO is responsible for tissue damage in IBD and is inhibited

effectively by resveratrol and its derivatives (143). Inhibition of IL-1,

IL-6, and TNF-a release from macrophages, iNOS expression and

subsequent NO production, prostaglandin production,

cyclooxygenase (COX) enzyme activity, apoptosis, and MPO

activity are the potential mechanisms by which RSV exerts its

anti-inflammatory effect (90, 91) (Supplementary Table 1). The

action of resveratrol on ROS generation may involve a direct radical

scavenger effect or an effect on the activation of NADPH

oxidase (90).

It has been shown that the NF-kB pathway is linked to both

colitis and colon cancer development as a consequence of chronic

intestinal inflammation (144). Additionally, inflammation in the

colon inhibits the activity of the silent information regulator 1

(SIRT-1) gene and increases the activity of NF-kB. By activating

SIRT-1 and down-regulating NF-kB activation, RSV plays a vital

role in the regulation of inflammation that mediates colitis and

colon cancer (145) (Supplementary Table 1).

6.1.2 Curcumin
Curcumin, a polyphenol extracted from Curcuma longa rhizomes,

has a wide variety of beneficial antioxidant, anti-inflammatory,

immunomodulatory, neuroprotective, hepatoprotective, anti-cancer,

antiproliferative, and chemopreventive properties (34, 49, 50, 146–

148). Curcumin reduces OS and improves intestinal barrier integrity

and mitochondrial functions by inducing Parkin-dependent

mitophagy via AMPK (adenosine 5’-monophosphate activated

protein kinase) activation and TFEB (transcription factor EB)

nuclear translocation (149). As a result of its ability to inhibit the

expression of transcription factors and pro-inflammatory cytokines

such as TNF-a, IL-1, IL-6, IL-8, IL-12, IL-1b, and monocyte

chemoattractant protein-1 (MCP-1), curcumin has demonstrated

anti-inflammatory properties (Supplementary Table 1). Curcumin

can also compete with LPS for TLR4 receptor activation, thereby

inhibiting the TLR4/myeloid differentiation 88 (MyD88)/NF-kB
signaling pathways (150, 151). Curcumin can reduce LPS-induced

inflammation in vascular smoothmuscle cells via TLR4-MAPK/NF-kB
pathways by inhibiting ROS generation (93). This effect is mediated

through curcumin’s effects on TLR4 as it specifically prevents the LPS-

induced generation of MCP-1, TNF-a, and NO (93). Curcumin

reduces TNBS-induced colitis in rats by inhibiting the TLR4/NF-kB
signaling pathway and pro-inflammatory IL-27 expression (94).

Oral supplementation with curcumin reduces OS generated by

hyperthyroidism in rats, as shown by decreased LPx and protein

carbonyl (PC) levels and increased SOD and CAT activities in

tissues (34, 39, 49). In vitro studies show that curcumin can boost

cellular glutathione levels by stimulating the transcription of two

Gcl genes (Gclc and Gclm) encoding glutamate cysteine ligase,

which is the rate-limiting enzyme in glutathione synthesis (49,

152). It has been reported that curcumin may reduce OS by

modulating Nrf2 and KEAP1 function in the rat heart during

altered thyroid states (153). Oral delivery of nanoparticles
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containing curcumin in dextran sulfate sodium (DSS)-induced

colitis in Guinea pigs was associated with a substantial drop in

tissue LPx and PC levels, leukocyte infiltration, and TNF-a
production (95). Antioxidant balance is also regulated by

curcumin in rats with UC by lowering both colonic MPO activity

and total NO content as well as increasing colonic GST activity and

GSH contents when administered prior to the DSS challenge (154).

Curcumin has been shown to decrease OS markers MPO and MDA

levels and cell apoptosis in different animal models of colitis (155–

158) (Supplementary Table 1).

6.1.3 Quercetin
Quercetin (QCT), a member of the flavonols (a subclass of

flavonoids), is a polyphenolic molecule found in plants and has

demonstrated anti-inflammatory, antioxidant, and antitumoral

effects. Several studies have shown that quercetin can suppress the

expression of inflammatory mediators and cytokines such as COX-

2, NO, NF-kB, prostaglandin E2 (PGE2), iNOS, TNF-a, IL-1b, and
IL-6 that are generated through the LPS-TLR4 pathway (159)

(Supplementary Table 1). LPS-induced inflammation is

suppressed by quercetin-rich Myrsine seguinii ethanolic extract,

which inhibits Src- and Syk-mediated phosphoinositide 3-kinase

(PI3K) tyrosine phosphorylation and the TLR4/MyD88/PI3K

signaling pathways (160). This extract also suppressed iNOS, a

high-output Ca++-independent NOS stimulated by cytokines (161),

and COX-2 gene expression through reduced NF-kB and activator

protein (AP-1) stimulation (160).

Modulation of the stress response genes, including the

antioxidant enzyme GPX1, was detected after LPS stimulation of

the IBD enteroids and colonoids (57). Organoids have more

advantages than conventional models and have been employed in

fundamental and clinical research, such as for genetic and infectious

diseases, regenerative medicine, and accurate and reliable drug

screening (162–168). Murine colitis-derived intestinal organoids

stimulated by LPS show reduced mRNA expression of

inflammatory mediators such as TNF-a and lipocalin-2 (LCN2)

when treated with quercetin (96). The anti-inflammatory action of

quercetin was also accompanied by a decrease in the expression

of C/EBP-b, a transcription factor that induces the expression of

several inflammatory mediators, including TNF-a (169). Human

apoB promoter analysis shows that a CCAAT enhancer-binding

protein (C/EBP)-response element is critical for the action of

quercetin. Through its interaction with C/EBPb, quercetin has the

potential to inhibit the recruitment of co-activators. Quercetin also

suppresses apolipoprotein B (apoB) expression by inhibiting the

transcription of C/EBPb (169). Several polyphenols, including

quercetin, affect the expression of tight junction (TJ) proteins of

the intestinal epithelium (88). Using a DSS-colitis murine model,

quercetin restored the expression of zonula occludens-1, occludin,

junctional adhesion molecule-A, and claudin-3 (88).

There have been several studies on animal models of UC that

provide evidence for the use of quercetin to treat IBD (92, 170). Oral

quercetin (doses ranging from 25 to 100 mg/kg for 11 days) was

associated with decreases in loss of body weight loss, rectal bleeding,

and macroscopic and biochemical intestinal damage. It is possible
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that the antioxidant activity of QCT reduces LPx and OS by

regulating nitrites and nitrates, increasing glutathione (GSH), and

decreasing MPO activity in the colonic mucosa (92, 170)

(Supplementary Table 1). Additional research using animal

models demonstrates that QCT activity is mediated through the

inhibition of TNF-a expression. By regulating the anti-

inflammatory effects and bactericidal activity of macrophages

through heme oxygenase-1 (HO-1)-dependent pathway, QCT

may reduce the severity of experimental colitis (170, 171). Dietary

delivery of QCT to restore intestinal homeostasis and intestinal

normobiosis is a potentially promising treatment for IBD (171).

Quercetin inhibits the apical efflux of N-acetyl 5-aminosalicylic acid

(Ac-5-ASA) from Caco-2 cells, which was mediated by multidrug

resistance-associated protein 2. This suggests that using QCT as an

additional therapy may contribute to reduced dosages of

sulfasalazine required for therapeutic action while reducing

adverse drug effects (172). In another murine colitis model study

(173), quercetin-loaded microcapsule-treated mice showed

significantly more 2,2’-Azino-bis (3-ethylbenzothiazole-6-sulfonic

acid) (ABTS) radical cation scavenging and ferric reducing activity

as compared to colitis control mice. Results indicated that the QCT-

treated mice had significant reduction in neutrophil influx (MPO

activity), edema, and colonic macroscopic and histologic

inflammation. Finally, this treatment reduced the levels of the

pro-inflammatory cytokines IL-1b and IL-33 while maintaining

anti-inflammatory cytokine IL-10 levels, and maintained the levels

of endogenous antioxidants in the colons of colitic mice (173)

(Supplementary Table 1).

6.1.4 Green tea flavonoids
Currently, there is no established tolerable upper limit for

flavonoids in the Dietary Reference Intake framework (174).

However, the consumption of flavonoids in quantities naturally

present in foods does not pose any toxicity concerns (175). A high

consumption of flavonoids may increase the likelihood of iron

deficiency in populations with suboptimal iron levels (e.g., the

elderly). Nonetheless, in Western societies where sufficient intake

of heme iron and ascorbic acid occurs, the likelihood of developing

anemia is minimal (175). The bioavailability offlavonoids is limited,

as only a small fraction (i.e., less than 10% of the ingested quantity)

can attain peak concentrations in the bloodstream within a few

hours The bioavailability of flavonoids may be subject to various

factors, such as ingestion of dietary fiber, macro and micronutrients,

the duration of GI transit times, and composition of the gut

microbiota (176, 177).

Flavonoids in green tea have been shown to regulate the

expression of pro-inflammatory genes that target TLRs and inhibit

downstream MyD88- and Toll/IL-1R domain-containing adaptor-

inducing IFN-b (TRIF)-dependent signaling pathways (89).

Epigallocatechin-3-gallate (EGCG), a flavonoid present in green tea,

reduces TNF-a and also gene expression and the effects of nitric

oxide synthase (NOS) and COX in murine RAW 264.7 macrophages

(97). Treatment with EGCG-docosapentaenoic acid (DPA) esters has

been shown to reduce the production of the pro-inflammatory

mediators like nitric oxide (NO) and PGE2 via down-regulation of
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iNOS and COX-2 gene expression. Other EGCG ester derivatives

(stearic acid, eicosapentaenoic acid, and docosahexaenoic acids) also

have anti-inflammatory activity in murine RAW 264.7 macrophages

(97). The mechanism of action is believed to be the inhibition of

downstream TLR signaling affecting the MyD88- and/or TRIF-

dependent pathways with activation of NF-kB. A study also

demonstrated that EGCG blocks both the MyD88-dependent and

TRIF-dependent signaling pathways of TLRs in RAW264.7 cells (89).

In TRIF-dependent signaling pathways of TLR3 and TLR4, the

molecular target of EGCG is TANK-binding kinase1 (TBK1),

resulting in the decrease of interferon regulatory factor 3 (IRF3)

activation, as TBK1 is the downstream kinase of TRIF and

phosphorylates IRF3 resulting in its activation (89).

The combination of EGCG and piperine (piperine for enhancing

the bioavailability of EGCG) significantly decreased weight loss,

improved the clinical course, and increased overall survival in the

DSS-murine model of colitis (87). Reduced severity of the colitis was

linked to improved histology scores and reduced colonic MDA and

MPO activity (Supplementary Table 1). The combination of EGCG

and piperine improved SOD and GPx expression and suppressed the

generation of proinflammatory cytokines in vitro. It appears that the

powerful antioxidative potential of EGCG is responsible for its anti-

inflammatory effects in the DSS-murine model of colitis. Lipid

peroxidation occurs during IBD inflammation when ROS are not

neutralized, altering the permeability and selectivity of the cell

membrane and the activity of transmembrane transporters,

receptors, and enzymes (87). DSS-colitis mice that had been

administered EGCG and piperine had increased levels of AOEs

(SOD and GPx), indicating that the antioxidant capacity had

improved (87) (Supplementary Table 1).

6.1.5 Caffeic acid phenethyl ester
The anti-inflammatory, anti-cancer, and antioxidant effects of

caffeic acid phenethyl ester (CAPE) have been studied extensively

(98, 99, 178–181). Caffeic acid phenethyl ester inhibits LPS-induced

IL-12 production and NF-kB activation in monocyte-derived

dendritic cells (178). Caffeic acid phenethyl ester prevents the

activation of TLR4 by interfering with the interaction between the

TLR4/MD2 complex (180). In LPS-induced breast cancer cells,

CAPE can down-regulate the expression of TLR4, NF-kB p65,

TRIF, MyD88, and IRAK4 while stimulating cell apoptosis and

autophagy (181). In gingival fibroblasts, CAPE suppresses LPS-

induced production of IL-6, IL-8, iNOS, COX-2, TLR4/MyD88

mediated NF-kB, and phosphorylation of PI3K and protein kinase

B (PKB, or Akt) (179).

FA-97 (caffeic acid phenethyl ester 4-O-glucoside) is a new

synthetic CAPE derivative shown to attenuate body weight loss,

colon length shortening, increased colonic inflammatory cell

infiltration, and pro-inflammatory cytokine production (99). While

FA-97 increased overall antioxidant capacity in DSS-treated mice and

LPS-treated BMDMs and RAW 264.7 cells, it also decreased ROS and

MDA production. The mechanism of action of FA-97 is believed to

be the activation of the Nrf2/HO-1 pathway in both in vivo and in

vitro models. FA-97 activates Nrf2 and promotes its nuclear
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translocation to increase expression of its downstream target

proteins HO-1 and NAD(P)H:quinone oxidoreductase (NQO-1),

which reduces ROS. It also inhibits the NF-kB and AP-1 signaling

to suppress the expression of pro-inflammatory cytokines IL-1, IL-6,

TNF-a, and IL-12 (Supplementary Table 1). In addition to

ameliorating DSS-induced colitis, FA-97 promotes normal

epithelial barrier function (98, 99).

6.1.6 Luteolin
The flavonoid compound luteolin, found in various plant

extracts, has been shown to have anti-inflammatory, antioxidant,

anti-metastasis, and apoptosis-inducing properties. Luteolin has been

reported to reduce LPS-stimulated expression of NF-kB, TNF-a, and
ICAM-1 and TBK1-kinase activity via the MyD88-independent

signaling pathway (182). Luteolin inhibited the expression of target

genes IL-6, IL-12, IL-27, TNF-a, IP-10, IFNb, CXCL9 (C-X-C motif

chemokine ligand 9) in macrophages by inhibiting IRF3 and NF-kB
activation (Supplementary Table 1). Luteolin was able to suppress the

ligand-independent activation of IRF3 or NF-kB triggered by TLR4,

TRIF, or TBK1. Luteolin also reduces the amount of TBK1-

dependent gene expression by inhibiting TBK1-kinase activity, and

IRF3 dimerization and phosphorylation. Moreover, luteolin

structural analogs, such as quercetin, chrysin, and eriodictyol, also

inhibit TBK1-kinase activity and TBK1-target gene expression. These

findings indicate that TBK1 is a unique target of anti-inflammatory

flavonoids resulting in the inhibition of the TRIF-dependent signaling

pathway (182).

LPS-induced inflammatory responses are controlled at the

transcriptional level through the MAPK and NF-kB pathways (100,

183, 184). Toll-like receptors trigger NF-kB and MAPK cascades

responses to LPS stimulation, causing the production of ROS,

increased MPO expression, and expression of pro-inflammatory

molecules and chemokines. In mice with LPS-induced acute lung

injury (ALI), luteolin reduced the activation of ERK, p38MAPK, and

JNK in lung tissue. The protective action of luteolin is due to its ability

to block MAPK pathways, which prevents the activation of NF-kB and

the degradation of IkB. Upon administration of LPS, luteolin

pretreatment prevents these inflammatory processes from developing

(100). In addition, the results in mice indicate that the activities of SOD

and CAT increased following pretreatment with luteolin versus LPS

treatment alone. MPO levels are reduced in LPS-induced acute lung

injury (ALI) when pretreated with luteolin. This mechanism of action

is believed to be due to luteolin suppression of LPS-induced ALI-

related MDA generation in the lungs (100) (Supplementary Table 1).

6.1.7 Xanthohumol
Xanthohumol (XN), a compound derived from hop plants, is a

prenylated chalcone with, antioxidant, anti-cancer, and anti-

inflammatory activities via inhibition of TLR4/MD-2 complex

(185). Downstream, XN suppresses macrophage iNOS expression

and NO, and interferon-gamma (IFN-g) production (186, 187).

Pretreatment with XN in DSS-treated mice decreased the severity of

diarrhea, hematochezia, rectal bleeding, and reduced colon length.

Moreover, XN protected against epithelial cell injury, cellular
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infiltration, pro-inflammatory cytokines, and crypt changes

following the DSS challenge (101). Pre-treatment with XN prior

to DSS exposure resulted in decreased MDA levels and COX-2

expression suggesting a protective effect against experimental colitis

(101) (Supplementary Table 1). Moreover, nuclear factor of kappa

light polypeptide gene enhancer in B-cells inhibitor, alpha (IkBa)
phosphorylation, nuclear translocation of p65, p50, and p105 NF-

kB subunits, and NF-kB DNA-binding transcriptional activity were

suppressed by XN treatment of DSS-treated mice and H2O2- or

LPS-treated IEC-6 cells (101).

XN protects mice from DSS-induced colitis and H2O2- or LPS-

treated IEC-6 injury, possibly by the interaction between the a, b-
unsaturated carbonyl moiety of XN and Cys99 in IKKb, and thus by

its ability to inhibit the IKKb/NF-kB signaling pathway. Additionally,

XN inhibited the activation of the canonical NF-kB pathway, as

evidenced by the downregulation of NF-kB target genes, like A1a,

A20, Bcl-xL, and c-myc (101) (Supplementary Table 1). These

collective results indicate that XN may be a promising therapeutic

agent for the prevention or treatment of colitis (188).
6.1.8 Genistein
A soy isoflavone, genistein, is a powerful antioxidant and anti-

inflammatory agent (102–105, 189). Following treatment with

genistein, reduced levels of IL-6, TNF-a, and NF-kB activation

have been observed in in vitro and in vivo studies (104, 189).

Genistein also inhibited BV2 microglia LPS-induced NO

production, prostaglandin E2 release and expression of

inflammatory cytokines (IL-1b, TNF-a), TLR4, and MyD88

expression (102). Expression of interferon beta (IFN-b), IL-1a,
IL-1b, IL-6, IL-10, TNF-a, colony-stimulating factor 2 (CSF-2),

colony-stimulating factor 3 (CSF-3), chemokines CCL2 (chemokine

ligand 2), and CXCL10 (C-X-C motif chemokine ligand 10),

transcription factor NF-kB, IkBa, and COX-2 are all decreased in

genistein-pretreated LPS-induced RAW264.7 macrophages (103)

(Supplementary Table 1). In humans, six months of daily oral

administration of genistein has been shown to decrease TNF-a
levels decreased in obese postmenopausal women (106). Dietary

supplementation with genistein lowered the expression of vascular

adhesion molecule-1 (VCAM-1), a major cell adhesion molecule

involved in inflammation (190), and F4/80 positive macrophages in

the aorta of TNF-a-treated C57BL/6 mice (104). Human umbilical

vein endothelial cells (HUVECs) in culture showed significant

increases in the activities of GR, GPx, GST, NQO-1, SOD, and

CAT when treated with 50 µM genistein (104) (Supplementary

Table 1). Due to its ability to stimulate IL-1b secretion, the NLRP3

inflammasome has been linked to IBD in experimental models as

well as human studies (191). In the DSS murine colitis model,

treatment with genistein significantly slowed weight loss and

reduced colon shortening, infiltration of inflammatory cells as

well as the production of pro-inflammatory mediators in both

serum and colon (105). Genistein’s protective properties may

stem from the ubiquitination of NLRP3 caused by the interaction

of cAMP with the protein. It has been shown that genistein can

inhibit the NLRP3 inflammasome via TGR5-cAMP signaling in

human macrophages (105).
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6.1.9 Alpinetin
Alpinetin, a naturally occurring dihydroflavone (192),

ameliorates clinical severity (disease activity index; DAI), colonic

shortening, histological scores, and MPO activity in DSS-treated

mice (108). The expression of occludin and zonula occludens-1 and

SOD activity were increased, while the MDA amount was decreased

by alpinetin in DSS-treated mice. Also, Nrf2/HO-1 signaling

pathways were activated by alpinetin in DSS-treated mice (108).

Alpinetin exhibits its anti-inflammatory activities by suppressing

TLR4/IkBa/NF-kB signaling (107). In that study, alpinetin

decreased the expression levels of IL-1b, IL-6 and TNF-a
(Supplementary Table 1) in LPS-treated RAW 264.7 macrophages

in vitro and in the in vivo LPS-induced acute lung injury murine

model (107) by disrupting ERK/p38MAPK signaling (193).

6.1.10 Proanthocyanidins
Grape seed proanthocyanidin extract (GSPE) is composed of

approximately 90% proanthocyanidins, including oligomers

(74.8%), dimers (6.6%), trimers (5.0%) and tetramers (2.9%)

(194). Inhibiting the expression of NF-kB-targeted genes is a

primary mechanism by which GSPs exert their antioxidant and

anticarcinogenic actions (109, 195, 196). It is proposed that GSPs

inhibit NF-kB activation by inhibiting the activation of IkK
(inhibitor of kB kinase) to prevent phosphorylation-induced

degradation of IkBa (196). The effect of GSPs on enhancing

antioxidant enzymatic defense was confirmed by their ability to

boost colonic SOD activity (109, 195).

Nutritional and pharmacological dosages of proanthocyanidins

protect against endotoxin (LPS)-induced intestinal inflammation,

OS, and intestinal permeability in colitic rats (197). Notably, area-

specific LPS-induced inflammation in the intestine has been

identified, and a unique gene signature may be useful to

determine the affected intestinal region (57). Treatment with

GSPE reduces MPO and COX-2 activity, modifies the gene

expression of ileal inflammatory and permeability proteins, and

reduces ROS, MDA, and NO levels, and iNOS activities

(Supplementary Table 1) in the large intestine (109, 197). Also,

GSPE treatment enhances SOD, GPx activity, and glutathione levels

in colon tissues and serum of TNBS-induced colitis in rats (109)

(Supplementary Table 1).

6.1.11 Anthocyanins
The antioxidant properties of anthocyanins, as well as their ability

to influence gut microbiota and to down-regulate the immune

response, have significant implications for reducing intestinal

inflammation (198, 199). In human monocytic THP-1 cells,

treatment with bilberry extract (BE), rich in anthocyanins, inhibited

IFN-g activation of STAT1 and STAT3 and lowered mRNA expression

and/or secretion of MCP-1, TNF-a, IL-6, and ICAM-1 (110). The

effects of genetically engineered tomato extracts (enriched in

anthocyanins) (200) showed that the extract reduced the activation

of epithelial cells SAPK/JNK (stress-activated protein kinase/c-Jun NH

(2)-terminal kinase) and p38MAPK signaling pathways. Furthermore,

pro-inflammatory cytokines and chemokines, including TNF-a and

IL-10, were inhibited by anthocyanin-rich tomato extracts (200). It has
frontiersin.org

https://doi.org/10.3389/fendo.2023.1217165
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Sahoo et al. 10.3389/fendo.2023.1217165
been shown that anthocyanin-rich fractions from red raspberries (112)

and purple carrots (111) decrease the production of iNOS, COX-2, IL-

1b, and IL-6 in LPS/IFN-g activated macrophages in vitro. In murine

colitis, anthocyanins extracted from the Chinese plant Dioscorea alata

L (201). decreased DAI (body weight loss, fecal occult blood, and fecal

consistency), increased the gene expression of tight junction proteins

and reduced OS markers (MPO and iNOS) along with IFN-g and

TNF-a levels. Red raspberry berry (RB) powder (202) can attenuate the

effects of DSS treatment by preventing weight loss, neutrophil

infiltration, colon shortening by inhibiting IL-1, IL-6, IL-17, and

TNF- a and COX-2 levels in inflamed tissues (Supplementary

Table 1). Supplementation with RB restored CAT levels to normal,

decreased xanthine oxidase (XO) levels and expression of MCP-1, and

thus reduced neutrophil infiltration and ROS formation (202).

Similarly, when an extract of blueberry anthocyanins (BBA) (203)

was used, disease activity, MPO and MDA levels were reduced in

murine colitis. In addition to decreasing serum prostaglandin E2 levels,

BBA reduces OS marked by increased SOD and CAT levels. Moreover,

mRNA expression of NF-kB, IFN-g, COX-2, IL-1b, and iNOS was

reduced, indicating that blueberry’s protective effect is at least partially

mediated by the inhibition of inflammatory mediators (203). Similarly,

it has been shown that colitis symptoms (colon shortening, DAI, loss of

appetite, and weight gain), decreased SOD, and increased MPO can be

mitigated and that GPx and GR activities (Supplementary Table 1) can

be increased by administering grape pomace extract (GPE) (86). Anti-

inflammatory effects of GPE were observed in DSS-treated mice as

evidenced by reduced IL-1b, IL-1a, IL-6, and IFN-g and also TNF-a
activities. Gene expression for the p65 subunit of NF-kB, TNF-a, and
COX-2 was reduced, which down-regulates the production of pro-

inflammatory cytokines by GPE (86). Similarly, cocoa (anthocyanidins/

anthocyanins) supplementation (204) decreasedMDA, increased SOD,

CAT, GPx, and GRx, and reduced iNOS and COX-2 gene expression

in murine colitis. Moreover, cocoa is able to stimulate Nrf-2

transcription factor-activated expression of NQO1 and UDP-GT to

reduce OS. Cocoa supplementation can also lower CD68+ neutrophils,

MPO, TNF-a, IL-1b and IL-17 and suppress STAT-3 activation in

colitic tissues (204) (Supplementary Table 1).

One randomized, placebo-controlled trial involving healthy

humans found that eating anthocyanins-rich, purple-fleshed

potatoes for six weeks reduced the levels of inflammatory markers

like IL-6 and C-reactive protein (CRP) and the oxidative DNA-

damage marker 8-hydroxydeoxyguanosine (8-HdG) (205). In

another study, patients with mild to moderate UC were given an

anthocyanin-rich bilberry preparation for six weeks and showed

improvements in endoscopic Mayo score, histologic Riley index,

and fecal calprotectin levels for intestinal inflammation (206).

6.1.12 Silymarin
Silymarin (SM), an extract from milk thistle (Silybum

marianum), has been shown to have anti-inflammatory and

antioxidant properties. Silymarin decreases inflammation by

inhibiting NF-kB pathways and by optimizing the redox balance

in the cell through activating AOEs and non-enzymatic

antioxidants via Nrf2 activation (207). Studies show that SM

increases the total antioxidant capacity of colonic tissue to reduce
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LPx levels, neutrophilic infiltration and pro-inflammatory cytokine

production in TNBS-induced colitic rats. Also, treatment with SM

in TNBS-colitic rodents dramatically decreased colonic NF-kB
activity, levels of IL-1b, TNF-a, TBARS and MPO activity (113)

(Supplementary Table 1). In one randomized, double-blind,

placebo-controlled clinical trial, 35/38 UC patients administered

SM for 6 months achieved remission. Moreover, remission was

accompanied by improved patient biochemical parameters such as

decreased erythrocyte sedimentation rates, increased hemoglobin

levels, and decreased DAI scores (208). However, the bioavailability

of oral SM appears to vary widely between species and is impacted

by preparation methods (209–211). Thus, care should be taken

when designing experimental trials and extrapolating results

between species and preparations.

6.1.13 Thymol
Essential oils from Thymus, Origanum, and Lippia species are

rich in thymol (2-isopropyl-5-methylphenol), a monoterpene

phenol derivative of cymene (212). Thymol has demonstrated a

wide range of biological and pharmacological activities, such as

anti-inflammatory, antioxidant, anti-tumor, and antimicrobial

effects (213). Thymol exhibits gastroprotective effects on both

acute and chronic ulcer models by modulating the enhancement

of mucus production, prostaglandin synthesis, and activation of

ATP-sensitive K(+) channels (212). Thymol mitigates the reduction

of trans-epithelial electrical resistance (TEER) in a porcine IPEC-J2

monolayer cell model stimulated with LPS by increasing ZO-1 and

actin expression (118). In the DSS-induced murine colitis model,

thymol mitigates intestinal damage induced by DSS by up-

regulating the expression of tight junction protein claudin-3

(119). Similarly, thymol enhances the tight junction integrity and

induces up-regulation of cyclooxygenase-1 (COX1) activity in

Caco-2 cells (115).

Along with improving barrier function, thymol can decrease the

production of ROS and the expression of pro-inflammatory

cytokines following stimulation with LPS (118). Thymol exhibits

the ability to attenuate increased MPO and MDA levels induced by

LPS, as well as the expression of NF-kB, in a murine model of acute

lung injury (214) and in colonic homogenates in murine colitis

(215). Thymol exhibits inhibitory effects on the expression of TLR4

and the activation of NF-kB signaling in mice treated with acetic

acid to induce colitis (117, 120). Thymol has been found to exhibit

inhibitory effects on p38 phosphorylation, and it disrupts the

activation of the MAPK signaling pathway, thereby contributing

to the maintenance of immune homeostasis (216). Moreover,

thymol exhibits inhibitory effects on the activation of p-p38, p-

JNK, and p-ERK induced by LPS in RAW264.7 cells (116).

Consequently, thymol effectively suppresses the production of

various inflammatory cytokines such as NO, IL-6, TNF-a and

COX-2 (116), thus exhibiting the ability to attenuate the

inflammatory response through the inhibition of MAPK signaling

pathway. Similarly, thymol had the potential to mitigate

inflammatory responses by regulating the expression of JNK, AP-

1, STAT-3, and nuclear factors of activated T-cells (NFATs) in LPS-

stimulated J774.1 mouse macrophages (117).
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6.2 Alkaloids

6.2.1 Berberine
Berberine, an isoquinoline alkaloid from Berberis aristata, has

been used for decades to treat intestinal parasites and

enteropathogenic diarrhea due to its bactericidal activity, its

ability to inhibit protozoan growth, and also to inhibit

enterotoxin-induced intestinal electrolyte secretion (217–219).

Several in vivo studies confirm its anti-inflammatory role in

decreasing the expression of IL-1b, TNF-a, iNOS, ICAM-1, IL-6,

and NF-kB activation (220) (Supplementary Table 1). Berberine

reduces damage, inflammation scores, MPO activity, and colon

shortening caused by oral DSS ingestion. Moreover, berberine has

been shown to decrease levels of the pro-inflammatory cytokines

IFN-g, TNF-a, KC (keratinocyte chemoattractant or CXCL1), and

IL-17 and to maintain colon epithelial barrier function in DSS-

treated mice. Additionally, berberine enhanced apoptosis of colonic

macrophages and decreased proinflammatory cytokine production

in colonic macrophages and epithelial cells of DSS-treated mice.

Berberine suppresses Src activation and TLR4-mediated cell

motility in LPS-stimulated macrophages (121). Berberine also

inhibits the activation of MAPK and NF-kB signaling pathways

that stimulate proinflammatory cytokine production in both

colonic macrophages and epithelial cells from DSS-treated mice

(122). Multiple cellular kinases and signaling pathways, including

AMPK, MAPKs, and Nrf2 and NF-kB pathways, are involved in

berberine’s antioxidant and anti-inflammatory activities (221). By

suppressing the expression of NADPH oxidase, a key enzyme in the

generation of ROS in cells, berberine can mitigate OS (222).

Superoxide anion production in LPS-stimulated macrophages was

suppressed, while SOD activity normally was restored following

berberine treatment. Since it can suppress gp91phox (a plasma

membrane subunit of NADPH oxidase) expression and boost SOD

activity, berberine is able to restore cellular redox activity (222)

(Supplementary Table 1). In this instance, it is possible that

berberine enhances SOD expression through the silent mating

type information regulation 2 homolog 1 (SIRT1)/Forkhead Box

Class O (FOXO) pathway (221). In other experiments, berberine

has been shown to directly bind to PLA2G4A and inhibit the

MAPK/JNK signaling pathway to suppress PLA2G4A activity in

murine colitis (223). A double-blind placebo-controlled phase I trial

(123) demonstrated that berberine reduced colonic tissue

inflammation (Geboes score) (224) in mesalamine-treated UC

patients. However, it had no effect on inflammatory biomarkers

in other tissues or blood (123).
6.3 Storage polysaccharides

6.3.1 Tamarind xyloglucan
Tamarind xyloglucan (TXG), a nanofiber extracted from

tamarind, is a novel antioxidant that prevents DSS-induced colitis

in mice (124, 125). TXG protects the colon by reducing the total

inflammatory index, infiltration of inflammatory cells, submucosal

edema, goblet cell loss, epithelial erosion, granulation tissue,
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epithelial hyperplasia, and crypt irregularity, abscesses and loss

(124, 125). While TXG reduces inflammation by reducing TNF-a
and increasing anti-inflammatory IL-10, it reduces OS by lowering

levels of MDA, superoxide anion production, and the expression of

iNOS, NOX, COX-2, and p47 (125) (Supplementary Table 1).
6.4 Other phytochemicals

6.4.1 Sulforaphane
Sulforaphane, found in cruciferous vegetables, contains a wide

range of antibacterial, antioxidant, anti-inflammatory, and

immunomodulatory properties (225, 226). Treatment of rats with

colitis using sulforaphane reduces NO and MDA levels,

accompanied by increased GPx and reduced glutathione levels,

demonstrating its therapeutic antioxidant properties (8). Treatment

with sulforaphane increases the levels of Nrf2 and HO-1 (8)

(Supplementary Table 1). It has been observed that HO-1, an

antioxidant defense protein downstream of Nrf-2, prevents

oxidative damage to colonic tissue (99). Sulforaphane possesses

anti-inflammatory characteristics by decreasing TNF-a and IL-6

levels, inhibiting COX-2 expression, TLR4 oligomerization, TLR4/

MyD88 pathway and blocking the degradation of IL-1R-associated

kinase-1, NF-kB, and IFN regulatory factor 3 activation (227, 228).
6.5 Food/spices

6.5.1 Flaxseed oil (a-linolenic acid)
Flaxseed oil is an herbal product with a high a-linolenic acid

content, and it has been shown to reduce colonic damage in DSS-

induced colitis by modulating inflammatory factors, oxidative state,

and the cecal microbiota imbalances. DSS-colitic rat colon showed

low SOD activity and GSH levels, increased MPO activity and MDA

levels, and flaxseed oil dose-dependently alleviated this condition.

Compared to the DSS-treated group, flaxseed oil treatment for six

weeks raised SOD activity and GSH levels while decreasing MDA

levels and MPO activity (127) (Supplementary Table 1). A

metabolite of linoleic acid, 10-hydroxy-cis-12-octadecenoic acid

(HYA), inhibits TNF-a expression and DSS-induced alterations

in the expression of TJs such as occludin, zonula occludens-1, and

myosin light chain kinase. The metabolite HYA partially restores

the integrity of the intestinal epithelial barrier via the GPR40-MEK-

ERK pathway, as reported in human Caco-2 cells and the murine

DSS-colitis model (126).

6.5.2 Ginger
Ginger rhizomes, a rich source of many active compounds,

including gingerols , shogaols , g ingediols , z ingerone,

dehydrozingerone, gingerinone, and diarylheptanoids, have a

wide range of anti-inflammatory, analgesic, antioxidant, and anti-

cancer effects (129, 151, 229). S-[6]-gingerol inhibits the expression

of the inflammatory mediators IL-6, IL-8, and serum amyloid A1

(SAA1) in cytokine-stimulated human HuH7 hepatocyte cells by

inhibiting the NF-kB/COX-2 pathway to reduce OS (129).
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Concentration-dependent inhibition of LPS-induced IL-1b, IL-6,
TNF-a and PGE2 levels was demonstrated with 6-shogaol, the most

bioactive component of ginger (230). 6-Shogaol also reduces the

phosphorylation and nuclear translocation of NF-kB p65, thus

preventing LPS-induced NF-kB activation. In LPS-induced

murine RAW 264.7 macrophages, 6-shogaol was reported to

inhibit protein and mRNA expression of iNOS and COX-2 (128).

By inhibiting the phosphorylation of inhibitor kB (IkB)a and p65

and the subsequent degradation of IkBa, 6-shogaol decreased the

LPS-induced activity of NF-kB. PI3K/Akt and extracellular signal-

regulated kinase 1/2 activation by LPS is also blocked by 6-shogaol,

although the p38MAPK activation is not (128). Since TLR4

dimerization mediated by LPS is necessary for the activation of

downstream signaling pathways, including NF-kB, 6-shogaol blocks
this process and prevents NF-kB activation (231). Also, 6-shogaol

can block TLR-mediated signaling pathways directly at the receptor

(231). In LPS-induced macrophages, 6-shogaol suppresses the

MyD88-dependent signaling pathway by inhibiting IkB kinase

activity and TRIF-dependent signaling pathways that target TBK1

(232). Compounds extracted from ginger were tested for their

ability to stimulate phagocytosis and suppress nitric oxide

generation in the RAW 264.7 cell line induced by LPS (229).

Significant reductions in both LPS-induced nitric oxide

production and inducible nitric oxide synthase expression were

observed when 6-shogaol, 1-dehydro-10-gingerdione, and 10-

gingerdione were applied (229). Macrophages are essential

components of the immune system as they are responsible for the

elimination of necrotic cells. This function is critical as it prevents

the release of harmful contents from these cells, thereby minimizing

a proinflammatory response (233). RAW 264.7 cells treated with 1-

dehydro-10-gingerdione (1D10G) showed increased phagocytic

activity similar to stimulation by LPS. Also, RAW 264.7 cells

treated with 6-gingerol, 8-gingerol, 10-gingerol, 6-paradol, 10-

gingerdione, 1,7-bis-(4 ’ hydroxyl-3 ’ methoxyphenyl)-5-

methoxyhepthan-3-one, and methoxy-10-gingerol exhibited

increases in phagocytic activity (229). 1D10G directly decreased

the catalytic activity of cell-free IkB kinase b (IKKb) in RAW 264.7

macrophages activated with the TLR4 agonist LPS. In LPS-activated

macrophages, 1D10G inhibited TLR4-mediated expression of TNF-

a, NF-kB, IL-1b, IRF3, IFN-b and IP-10 (234). Furthermore, in

macrophages triggered by the TLR agonists LPS or TNF-a, D10G
irrevers ibly blocks cytoplasmic IKKb-catalysed IkBa
phosphorylation and IKKb vector elicited NF-kB transcriptional

activity to minimize inflammatory signals (235). Substitution of Cys

(179) with Ala in the activation loop of IKKb abrogates these effects

suggesting a direct interaction site of D10G. Lastly, D10G reduced

NF-kB activation in LPS-stimulated macrophages and decreased

the expression of iNOS, COX-2, and IL-6 (235).

In mice with DSS-induced colitis, ginger alleviates the

pathological lesions and reduces the expression of IL-6 and iNOS

(131). This study also showed that ginger has an anti-inflammatory

effect like that of the anti-inflammatory medication sulfasalazine

(SASP), reducing DAI and preventing further weight loss (131).

Ginger reduces IBD activity by targeting IL-17, IFN-g, and TNF-a,
while increasing the anti-inflammatory cytokines IL-10, IL-22, and

TGF-b (236) (Supplementary Table 1).
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Ginger extract exhibited the antioxidant effects in IL-1b-
mediated OS in human C28I2 chondrocyte cells by stimulating

the expression of several AOEs, decreasing IL-1b-induced ROS

production, LPx, and by reducing apoptosis (Bax/Bcl-2 ratio, and

caspase-3 activity) (130) (Supplementary Table 1). Patients with

active mild to moderate UC who ingested 2000 mg/day of dried

ginger powder in a randomized, placebo-controlled clinical trial had

lowered MDA without affecting serum total antioxidant

capacity (132).
6.6 Hormones and their anti-inflammatory
and antioxidant roles in IBD

There is growing recognition that the endocrine system plays an

important role in the pathogenesis of IBD through various

mechanisms (237). Hormone actions influence seemingly every

phase of inflammatory and immunological responses, and the

intestinal tract is the largest endocrine gland of the body, secreting

a vast amount of peptides with paracrine or endocrine function. In

sites of inflammation, several hormone receptors have been found to

be present in the reactive structures, which are known to have both

pro- and anti-inflammatory effects. Signals are generated upon the

binding of hormone molecules to specific hormone receptors; these

receptors are found on the surface of endothelial and inflammatory

cells and play a role in both pro- (such as insulin receptors) (238, 239)

and anti-inflammatory (glucocorticoid receptors) (240–242)

responses, respectively. The activity of the adrenal cortex is

responsible for mediating the indirect anti-inflammatory effects

that are caused by glucagon and thyroid hormones (243).

Therefore, inflammation is not only a local response but also a

hormone-controlled process that occurs locally (paracrine regulation)

and throughout the body (endocrine modulation).

One study involving 1,203 females (64% diagnosed with

CD,34% diagnosed with UC) reported increased symptoms

during their menstrual cycle. Symptoms were comparable among

CD and UC cohorts except for pregnant women, where symptoms

worsened (244). Women with UC have increased symptoms as

compared to women with CD. Understanding the significance of

hormones in the context of IBD is crucial for identifying potential

approaches to managing hormonal-associated symptoms in women

with IBD. The primary endocrine manifestations of IBD include

growth failure, metabolic bone disease, alterations in lipid and

carbohydrate metabolism, pubertal delay, and hypogonadism

(237). These manifestations are interrelated, and their complex

development is influenced by intestinal inflammation and the

individual’s nutritional status.

6.6.1 Sex hormones
Estrogens have been shown to increase AOEs by upregulating

their expression (34, 147, 245). The antioxidant impact of estrogen

is thought to be the principal method by which this hormone

protects various tissues from oxidative damage (246–248). It has

been postulated that sex hormones such as estrogen, progesterone,

and androgen contribute to the pathophysiology of sexual

dimorphism in human IBD (249). These control the behavior of
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many different types of immune cells, including lymphocytes,

macrophages, granulocytes, and mast cells. Multiple clinical

features of the disease, including intestinal barrier disintegration

and mucosal immune activation, may be modulated by sex

hormones, as shown in both clinical and experimental models

(249). There is growing interest in the potential regulation of the

intestinal microbiota by sex hormones. Estrogens have an effect on

the microbicidal activity that is carried out by MPO in

polymorphonuclear leukocytes (250). In CD, the G protein-

coupled estrogen receptor (GPER) appears to be a powerful

therapeutic target in maintaining remission because it promotes

anti-inflammatory effects. Reducing mortality, improving

macroscopic and microscopic scores, and lowering CRP levels

were all achieved with GPER activation in a TNBS-induced CD

murine model (251). Immunohistochemistry verified that estrogen

signaling inhibits intestinal inflammation. Genes involved in

signal transduction and immunological response, as well as the

expression of certain miRNAs (miR-145, miR-148-5p, and miR-

592), were shown to be altered in tandem with GPER activation, as

was the extracellular-signal-regulated kinase (ERK) signaling

pathway (251).

Increased expression of tight junction proteins was a

mechanism by which progesterone and estrogen facilitated wound

healing and epithelial barrier function in intestinal epithelial cells, as

reported using 2D cell lines and IBD patient-derived inflammatory

organoid models (252). These sex hormones also inhibited the

generation of pro-inflammatory cytokines in intestinal epithelial

models and greatly decreased endoplasmic reticulum (ER)-stress.

Pregnancy hormones like estrogen and progesterone have been

shown to have beneficial effects on disease activity by positively

modulating the intestinal epithelial lining (252).

6.6.2 Glucagon
Glucagon decreased iNOS expression and plasma levels of

nitrite/nitrate in LPS-treated rats (253). Glucagon is responsible

for inducing the antioxidant response by increasing GSH levels and

reducing both protein carbonyl and 3-nitrotyrosine (254) or by

upregulating AOEs as indicated by high levels of CAT expression in

the a cells of diabetic vs. non-diabetic murine models (255).

6.6.3 Enterohormones
Glucagon-like peptide-1 (GLP-1) and GLP-2 are important

enterohormones that mediate local and systemic effects (gut-

brain-periphery axis), contribute to glucose homeostasis, and

modulate GI functions such as the intestinal absorption of lipids

and antioxidant defense (256). The effects of these molecules

critically depend upon nitric oxide synthase (NOS) in the enteric

nervous system (ENS) and the intestinal microbiome (257).

Activation of the GLP-1 receptor has anti-inflammatory,

antioxidant, and anti-apoptotic effects, which include a reduction

of the pro-inflammatory actions of advanced glycation end

products (258) and of the accumulation of intracellular ROS, the

release of NO, and GPx and SOD production (259). Moreover, it

has been proposed that GLP-1 plays a critical role in the production

of NO (260), and intestinal GLP-1 production can be increased by
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the ingestion of grape-seed procyanidin extract (GSPE), resveratrol,

and curcumin (261–264). GSPE also increases intestinal peptide YY

(PYY) and varied cholecystokinin (CCK) secretion, which

modulates food intake (261, 265, 266).

The enterotrophic peptide hormone glucagon-like peptide 2

(GLP-2) was shown to abrogate OS and improve intestinal

antioxidant capacity by reducing LPS-induced increases in

intestinal IL-1b and oxidized glutathione levels (267) and

increasing intestinal SOD activity and reduced-glutathione levels

(268, 269) (Supplementary Table 1). Additionally, GLP-2 has a

protective effect on the function of the intestinal barrier (270),

intestinal IgA production (270), NO-regulated intestinal perfusion

(271), and stabilizes the expression and function of intestinal

xenobiotic transporters (267). Because intestinal barrier function

is critically impaired in IBD and CIE, complex neutraceuticals that

provide antioxidants and can enhance intestinal GLP-2 secretion,

and thus support enterocyte tight junctions and intestinal barrier

integrity (e.g., berberine, soy flavonoids, pre-/probiotics, soluble

fiber, glutamine), may be useful to restore and maintain intestinal

health (272).

Given the effects of GLP-1 and GLP-2 in maintaining intestinal

homeostasis, including cross-talk with the immune and central

nervous systems (273, 274), they appear to present potentially

beneficial treatment targets in IBD and CIE.

Reduced levels of serum motilin and gastrin, together with

lower pro-inflammatory cytokines and reduced tissue NF-kB and

COX-2 levels, and increased serum somatostatin, vasoactive

intestinal peptide, and tissue SOD, NO, and MDA levels were

associated with genistein- and daidzein-rich fermented soy

(shuidouchi) in an experimental animal model (275). Similar

antioxidative, anti-inflammatory, and enterohormone signature-

modulating effects have been demonstrated in experimental mice

receiving unsaturated fatty acid-rich silkworm pupa oil (276).

6.6.4 Glucocorticoids
The presence of glucocorticoid receptors in endothelial and

inflammatory cells (240–243), as well as increased concentrations

of circulating glucocorticoids at the onset of inflammation

downregulating inflammatory responses, is proof that

glucocorticoids are modulators of inflammatory responses (243, 277).

Adrenalectomized animals also showed greater microvascular

responses to inflammatory mediators and cell migration to inflamed

regions (243, 278). Glucocorticoids have powerful anti-inflammatory

and immunosuppressive effects, such as lowering cytokine production

or activity, reducing microvascular responses to inflammatory

mediators, preventing leukocyte accumulation at inflamed sites,

impeding phagocytic functions and microbicidal capacity of

polymorphonuclear leukocytes, preventing the recruitment of

mononuclear phagocytes to injured areas, and interfering with

immune function (243, 278–280).

6.6.5 Thyroid hormones
Thyroid hormones are associated with the oxidative and

antioxidative status of an organism because of their role in

regulating oxidative metabolism and in the formation of ROS (34,
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39, 50–55, 281). Rats with thyroid dysfunction, produced by

hormone injection or thyroidectomy, were evaluated for their

ability to respond to noxious stimuli in an effort to determine the

processes through which thyroid gland activity can influence the

development of inflammatory reactions (243, 282, 283). Rats with

hypothyroidism exhibit typical inflammatory responses, whereas

animals with a sustained excess of circulating thyroid hormones

exhibit consistently suppressed inflammatory responses (282, 283).

6.6.6 Corticotropin releasing hormone
A study was conducted to investigate the impact of

administering Corticotropin releasing hormone (CRH) to induce

psychosocial stress in DSS-treated colitic mice, specifically by

examining the potential enhancement of autophagy in intestinal

macrophages. The inflammatory challenges associated with IBD led

to increased autophagy in both intestinal macrophages and murine

bone marrow-derived macrophages, and these effects were further

increased by CRH (284).

6.6.7 Adipokines
IBD is distinguished by symptoms such as reduced appetite,

inadequate nutrition, changes in body composition, and the

enlargement of mesenteric white adipose tissue (mWAT) (285,

286). Adipokines, namely leptin, adiponectin, and resistin, play a

significant role in anorexia, malnutrition, changes in body

composition, and hypertrophy of mWAT (285, 286). Studies have

demonstrated that there is an increased expression of leptin,

adiponectin, and resistin in mWAT in individuals diagnosed

with CD.

6.6.7.1 Leptin

Leptin serves as a regulator of diverse immune and

inflammatory reactions in addition to its metabolic and endocrine

roles. Leptin has the ability to initiate activation and alter the

pattern of cytokine production, favoring a Th1 response by

promoting the release of IL-2 and IFN-g while inhibiting the

secretion of IL-4 (287). Additionally, it directly stimulates the

expression and release of IL-1a, IL-1b, IL-6, and TNFa by T-cells

(288). Leptin was found to be expressed and released into the

intestinal lumen by inflamed colonic epithelial cells in patients

diagnosed with UC. Leptin, in turn, elicited damage to the epithelial

wall and infiltration of neutrophils (289). There was a higher level of

leptin mRNA expression in the mesenteric white adipose tissue

(mWAT) of patients with IBD compared to the control group

suggesting that leptin may play a role in the inflammatory process

by increasing the expression of mesenteric TNFa (290). The study

found that individuals with IBD had lower levels of serum leptin

compared to a control group of healthy individuals. This difference

was observed regardless of factors such as sex, age, CRP levels, years

since diagnosis, and disease activity and localization. The study

found that individuals with a BMI greater than or equal to 25

exhibited significantly lower levels of serum leptin compared to

individuals with a BMI below 25 (286). The administration of

infliximab, an anti-TNFa biologic agent, to individuals diagnosed

with CD resulted in an elevation in leptinaemia levels. This suggests
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that TNFa plays a significant role in suppressing the production of

leptin in patients with CD (291).

6.6.7.2 Adiponectin

Adiponectin production and TNFa are mutually suppressed,

and their actions are antagonistic in the target tissues (292).

Additionally, in vitro studies have shown that IL-6 reduces

adiponectin levels (292). The induction of adiponectin resulted in

the production of IL-10 and interleukin-1 receptor antagonist (IL-

1Ra) in human peripheral blood mononuclear cells (PBMC),

macrophages, and dendritic cells (DC). Additionally, it hindered

the production of IFN-g in macrophages. The macrophages treated

with adiponectin demonstrated a decreased ability to engulf

particles and a diminished immune response to cells from a

different individual (293). Previous studies have suggested a

potential protective role of adiponectin against OS (294).

Conversely, it has been observed that OS leads to a reduction in

adiponectin secretion in 3T3-L1 adipocytes (295). Adiponectin can

inhibit the enhanced cytotoxic activity of natural killer (NK) cells

that are induced by IL-2, as well as the production of IFN-g (296).
Studies conducted using the adiponectin knock-out (KO) murine

model revealed that adiponectin KO mice exhibited a notably more

severe form of colitis in comparison to their wild-type counterparts.

However, the severity of colitis was significantly reduced when

adiponectin was supplemented. Additionally, it was observed that

adiponectin exhibited inhibitory effects on the production of IL-8 in

HT-29 cells stimulated with LPS, suggesting that adiponectin may

possess a direct anti-inflammatory impact on intestinal epithelial

cells (297). However, other studies showed contradictory results on

the effect of adiponectin on the development of colitis and

restoration of inflammation (298). There is an elevated secretion

of adiponectin from mWAT in patients with CD who have

undergone surgery, in comparison to patients with diverticulitis

and colon carcinoma. Also, serum adiponectin levels are increased

in patients with IBD versus healthy controls (286).

6.6.7.3 Resistin

The secretion of resistin frommWAT in patients who underwent

surgery for colon cancer or diverticulitis was observed to be

significantly lower when compared to the secretion from the

adipose tissue adjacent to the affected intestine in patients with CD

(285). It was noted that the administration of steroids led to a

reduction in resistin production in CD patients (299). The levels of

serum resistin in patients with IBD (with active disease and also with

quiescent disease) are elevated in comparison to healthy controls.

6.6.7.4 Ghrelin

In chronic DSS-induced colitis in ghrelin KO mice, due to the

absence of endogenous ghrelin, the DAI was reduced, and the

infiltration of neutrophils was delayed compared to wild-type (300).

The introduction of ghrelin either at the onset of the disease or a few

days after colitis had developed resulted in ameliorating both the

clinical and histopathologic severity of the disease. This therapeutic

effect was observed alongside the suppression of inflammatory and

Th1-driven autoimmune response, as well as elevated levels of IL-10
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(301). Ghrelin mRNA expression and its receptor were found to be

increased in TNBS-induced colitic murine models. Serum ghrelin

levels were increased in patients with IBD, regardless of whether the

disease was active or in remission and were higher in male versus

female patients. Ghrelin levels were higher in patients with ileal CD

compared to those with colonic CD. In contrast, Peracchi et al.

(302) demonstrated that individuals with active IBD exhibited

elevated levels of circulating ghrelin in comparison to both

healthy controls and patients in a state of remission.

6.6.8 Type 2 diabetes and IBD
Previous research conducted on animals has indicated that the

presence of peroxisome proliferator-activated receptor g (PPAR g) in
the intestinal epithelial cells, macrophages, and T cells of mice with

experimental IBD demonstrates immunoregulatory effects and

potentially plays a role in the prevention of intestinal inflammation

(303, 304). The administration of the gamma subtype of peroxisome

proliferator-activated receptors (PPARg) ligands has been

demonstrated to reduce the production of inflammatory cytokines,

such as IL-1b and TNF-a, as well as inhibit the proliferation of

inflammatory cells and the expression of specific adhesion molecules

(305). The thiazolidinedione (TZD) antidiabetic medications for the

treatment of type 2 diabetes function as ligands for the gamma

subtype of PPARs. Several trials with TZD in the context of IBD have

yielded intriguing outcomes (237, 306, 307). In a multicenter

randomized, double-blind, placebo-controlled clinical trial, the

effectiveness of rosiglitazone in managing UC with mild to

moderate activity has been demonstrated (306). Here, 17% of

patients who received treatment with rosiglitazone were able to

achieve remission. Significant clinical improvement was observed in

as short as 4 weeks, with enhanced quality of life by the 8th week

(306). In another study, it was determined that TZD does not confer

any discernible benefits in comparison to alternative oral antidiabetic

drugs with regard to the prevention of UC-related flares.

Nevertheless, the utilization of TZD may diminish the probability

of experiencing more severe disease flares that necessitate oral steroid

treatment (307).

6.6.9 Melatonin
Melatonin (N-acetyl-5-methoxytryptamine) has several unique

scavenging effects making it an exceptionally potent direct free radical

scavenger and multifunctional antioxidant (34, 308, 309). Melatonin

is an electron-rich molecule that can react with free radicals to

produce stable compounds that are excreted in the urine (310).

Melatonin is frequently referred to as a suicidal or terminal

antioxidant because it eliminates free electrons from the system

throughout its chemical rearrangement, and each of the

rearrangement products is again a potent antioxidant. Melatonin

acts as an indirect antioxidant, increasing AOEs, including SOD,

CAT, GPx, GR (311, 312), and glucose-6-phosphate dehydrogenase

(G6PD) (313). Increased intracellular levels of the antioxidant GSH

are generated as a consequence of melatonin stimulating g-glutamyl

cysteine synthetase (the rate-limiting enzyme in GSH formation) and

GR (the enzyme converting GSSG to GSH) (314, 315). Melatonin also

potentiates the function of the mitochondrial electron transport

chain, which reduces free radical generation and electron leakage
Frontiers in Endocrinology 16
(316). Melatonin inhibits the production of free radicals by acting as a

negative modulator of several pro-oxidant enzymes including 5-

lipoxygenase, 12-lipoxygenase, and NO synthase (309). It also

prevents mitochondrial damage and reduces NF-kB signaling,

suggesting a repair mechanism for intestinal injury caused by OS

(317). Decreased levels of hydroxyl radical (HO•), peroxynitrite

(ONOO-), RO2
•, and singlet oxygen, and decreased expression of

COX-2 and iNOS and NF-kB activation are all antioxidant effects of

melatonin (318, 319), pointing to the possibility that melatonin is

beneficial in UC by lowering inflammation and regulating OS. Pineal-

derived melatonin and de novo synthesis in the GI tract both produce

melatonin which helps regulate gut immunity and intestinal barrier

integrity. Due to its antiapoptotic action and ability to decrease

bacterial translocation across epithelia, melatonin can limit mucosal

damage (73). Animal studies have demonstrated that melatonin

treatment reduces inflammation by blocking the production of IL-

10, IFN-g, TNF-a, IL-6, and NO• (320) (Supplementary Table 1). In

murine colitis, melatonin reduces the generation of ROS and reactive

nitrogen species (RNS), characterized by lowering colonic MDA

levels and MPO activity and improved antioxidant defenses with

increased GSH and SOD levels in the colon (134).

By modulating autophagy and Nrf2 signaling pathways,

melatonin slows the progression of colitis-associated colon cancer

in mice. In this colon cancer model, melatonin decreased the levels

of inflammatory markers IL-6, IL-17, TNF-a, NF-kB, COX-2 and

STAT3, as well as reduced DNA damage and OS indicated by

reduced TBARS and increased GSH levels (Supplementary Table 1).

The decrease in the expression of Beclin-1 and the LC3-II/LC3-I

ratio, along with an increased expression of p62, indicate

melatonin-inhibited cancer-associated autophagy. These results

are like those showing upregulation of Nrf2 and AOEs NQO-1

and HO-1 in melatonin-treated mice with colon cancer (321).

Another study investigated the role of oral melatonin therapy on

OS in dogs before and after ovariohysterectomy (OHE) (135). The

levels of SOD, GPx, and CAT were increased, and MDA decreased

in ovariohysterectomized dogs (Supplementary Table 1) that

received melatonin compared to those of the control group. These

preliminary findings suggest that melatonin administration may

reduce OS induced by OHE in dogs. Adjuvant melatonin treatment

may aid in maintaining remission in patients with UC (136). In this

clinical trial, patients receiving melatonin adjuvant treatment-

maintained remission (e.g., lower disease activity scores and

inflammatory biomarkers such as CRP levels with increased

hemoglobin concentrations) over 12 months of observation (136).
7 Conclusion

Oxidative stress plays a crucial role in the pathogenesis of IBD

and is closely associated with the development of intestinal

inflammation in humans and animals. Therapeutic strategies

involving natural antioxidant products have shown benefit in

numerous human studies and animal models. An improved

comprehension of the free radical biology mediating GI disease is

essential for developing effective future treatments to reduce

intestinal inflammation and improve the quality of life in affected
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individuals. Also, hormonal intervention holds potential

importance in the context of IBD and cannot be disregarded. In

this review, we have discussed the major antioxidant and anti-

inflammatory properties of various phytochemicals and hormones

in IBD. We have also discussed significant evidence-based

observations, including the results from clinical trials using

natural antioxidants or their modified formulations. Based on the

existing scientific evidence, it appears likely that future therapies

will include antioxidants with standard treatments or even as an

alternative medical option in humans and animals with IBD.
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Pérez-Cano FJ, et al. Effects of a cocoa diet on an intestinal inflammation model in rats.
Exp Biol Med (Maywood) (2012) 237:1181–8. doi: 10.1258/EBM.2012.012083

205. Kaspar KL, Park JS, Brown CR, Mathison BD, Navarre DA, Chew BP.
Pigmented potato consumption alters oxidative stress and inflammatory damage in
men. J Nutr (2011) 141:108–11. doi: 10.3945/JN.110.128074

206. Biedermann L, Mwinyi J, Scharl M, Frei P, Zeitz J, Kullak-Ublick GA, et al.
Bilberry ingestion improves disease activity in mild to moderate ulcerative colitis— An
open pilot study. J Crohns Colitis (2013) 7:271–9. doi: 10.1016/J.CROHNS.2012.07.010

207. Surai PF. Silymarin as a natural antioxidant: an overview of the current
evidence and perspectives. Antioxidants (Basel) (2015) 4:204–47. doi: 10.3390/
ANTIOX4010204

208. Rastegarpanah M, Malekzadeh R, Vahedi H, Mohammadi M, Elahi E,
Chaharmahali M, et al. A randomized, double blinded, placebo-controlled clinical
trial of silymarin in ulcerative colitis. Chin J Integr Med (2015) 21:902–6. doi: 10.1007/
S11655-012-1026-X

209. Zhang Z, Li X, Sang S, McClements DJ, Chen L, Long J, et al. A review of
nanostructured delivery systems for the encapsulation, protection, and delivery of
silymarin: An emerging nutraceutical. Food Res Int (2022) 156:111314. doi: 10.1016/
J.FOODRES.2022.111314

210. Ahmad S, Khan JA, Kausar TN, Mahnashi MH, Alasiri A, Alqahtani AA, et al.
Preparation, characterization and evaluation of flavonolignan silymarin effervescent
floating matrix tablets for enhanced oral bioavailability. Molecules (2023) 28:2606.
doi: 10.3390/MOLECULES28062606

211. Hackett ES, Mama KR, Twedt DC, Gustafson DL. Pharmacokinetics and safety
of silibinin in horses. Am J Vet Res (2013) 74:1327–32. doi: 10.2460/AJVR.74.10.1327
frontiersin.org

https://doi.org/10.3389/FTOX.2021.773953
https://doi.org/10.3389/FTOX.2021.773953
https://doi.org/10.3791/63612
https://doi.org/10.3390/CELLS12091269
https://doi.org/10.1038/s41598-023-38212-8
https://doi.org/10.1371/JOURNAL.PONE.0121784
https://doi.org/10.4103/0253-7613.132160
https://doi.org/10.4103/0253-7613.132160
https://doi.org/10.1080/15384101.2017.1387701
https://doi.org/10.1080/15384101.2017.1387701
https://doi.org/10.1111/JPHP.12062
https://doi.org/10.1021/np300670w
https://doi.org/10.3945/AN.113.004465
https://doi.org/10.3945/AN.113.004465
https://doi.org/10.1080/21551197.2012.698219
https://doi.org/10.1021/JF900591Q
https://doi.org/10.1007/S11130-009-0110-7
https://doi.org/10.1186/1471-2172-10-39
https://doi.org/10.1016/J.EJPHAR.2016.11.003
https://doi.org/10.1111/BPH.12091
https://doi.org/10.1186/S12906-017-1984-9
https://doi.org/10.1186/S12906-017-1984-9
https://doi.org/10.1016/J.BCP.2009.01.009
https://doi.org/10.1016/J.EJPHAR.2008.02.009
https://doi.org/10.1016/J.BCP.2009.03.012
https://doi.org/10.1016/J.EJMECH.2017.08.036
https://doi.org/10.1248/BPB.26.61
https://doi.org/10.1016/J.INTIMP.2007.12.017
https://doi.org/10.1186/S13063-022-06782-Z
https://doi.org/10.1016/J.JNUTBIO.2012.05.008
https://doi.org/10.3390/IJMS19041057
https://doi.org/10.3389/FIMMU.2019.00276
https://doi.org/10.3389/FPHAR.2022.814370/BIBTEX
https://doi.org/10.1016/J.INTIMP.2013.04.030
https://doi.org/10.1111/PHP.12330
https://doi.org/10.1016/J.INTIMP.2011.05.024
https://doi.org/10.3390/MOLECULES16086721
https://doi.org/10.3390/MOLECULES16086721
https://doi.org/10.1002/MNFR.201800720
https://doi.org/10.1080/17474124.2018.1513322
https://doi.org/10.1080/17474124.2018.1513322
https://doi.org/10.3945/AJCN.115.108555
https://doi.org/10.3945/AJCN.115.108555
https://doi.org/10.3389/FNUT.2017.00061/BIBTEX
https://doi.org/10.3389/FNUT.2017.00061/BIBTEX
https://doi.org/10.1039/C6FO01273F
https://doi.org/10.1016/J.JNUTBIO.2017.08.017
https://doi.org/10.1016/J.JNUTBIO.2017.08.017
https://doi.org/10.1016/J.JNUTBIO.2015.10.006
https://doi.org/10.1258/EBM.2012.012083
https://doi.org/10.3945/JN.110.128074
https://doi.org/10.1016/J.CROHNS.2012.07.010
https://doi.org/10.3390/ANTIOX4010204
https://doi.org/10.3390/ANTIOX4010204
https://doi.org/10.1007/S11655-012-1026-X
https://doi.org/10.1007/S11655-012-1026-X
https://doi.org/10.1016/J.FOODRES.2022.111314
https://doi.org/10.1016/J.FOODRES.2022.111314
https://doi.org/10.3390/MOLECULES28062606
https://doi.org/10.2460/AJVR.74.10.1327
https://doi.org/10.3389/fendo.2023.1217165
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Sahoo et al. 10.3389/fendo.2023.1217165
212. Ribeiro ARS, Diniz PBF, Pinheiro MS, Albuquerque-Júnior RLC, Thomazzi
SM. Gastroprotective effects of thymol on acute and chronic ulcers in rats: The role of
prostaglandins, ATP-sensitive K(+) channels, and gastric mucus secretion. Chem Biol
Interact (2016) 244:121–8. doi: 10.1016/J.CBI.2015.12.004

213. Salehi B, Mishra AP, Shukla I, Sharifi-Rad M, Contreras M del M, Segura-
Carretero A, et al. Thymol, thyme, and other plant sources: Health and potential uses.
Phytother Res (2018) 32:1688–706. doi: 10.1002/PTR.6109

214. Wan L, Meng D, Wang H, Wan S, Jiang S, Huang S, et al. Preventive and
therapeutic effects of thymol in a lipopolysaccharide-induced acute lung injury mice
model. Inflammation (2018) 41:183–92. doi: 10.1007/S10753-017-0676-4

215. Winterbourn CC, Kettle AJ, Hampton MB. Reactive oxygen species and
neutrophil function. Annu Rev Biochem (2016) 85:765–92. doi: 10.1146/ANNUREV-
BIOCHEM-060815-014442

216. Liang D, Li F, Fu Y, Cao Y, Song X, Wang T, et al. Thymol inhibits LPS-
stimulated inflammatory response via down-regulation of NF-kB and MAPK signaling
pathways in mouse mammary epithelial cells. Inflammation (2014) 37:214–22.
doi: 10.1007/S10753-013-9732-X

217. Sack RB, Froehlich JL. Berberine inhibits intestinal secretory response of Vibrio
cholerae and Escherichia coli enterotoxins. Infect Immun (1982) 35:471–5.
doi: 10.1128/IAI.35.2.471-475.1982

218. Kaneda Y, Torii M, Tanaka T, Aikawa M. In vitro effects of berberine sulphate
on the growth and structure of Entamoeba histolytica, Giardia lamblia and
Trichomonas vaginalis. Ann Trop Med Parasitol (1991) 85:417–25. doi: 10.1080/
00034983.1991.11812586

219. Amin AH, Subbaiah T v., Abbasi KM. Berberine sulfate: antimicrobial activity,
bioassay, and mode of action. Can J Microbiol (1969) 15:1067–76. doi: 10.1139/M69-
190

220. Wan X, Chen X, Liu L, Zhao Y, Huang WJ, Zhang Q, et al. Berberine
ameliorates chronic kidney injury caused by atherosclerotic renovascular disease
through the suppression of NFkB signaling pathway in rats. PloS One (2013) 8(3):
e59794. doi: 10.1371/JOURNAL.PONE.0059794

221. Li Z, Geng YN, Jiang JD, Kong WJ. Antioxidant and anti-inflammatory
activities of berberine in the treatment of diabetes mellitus. Evid Based Complement
Alternat Med (2014) 2014:289264. doi: 10.1155/2014/289264

222. Sarna LK, Wu N, Hwang SY, Siow YL, Karmin O. Berberine inhibits NADPH
oxidase mediated superoxide anion production in macrophages. Can J Physiol
Pharmacol (2010) 88:369–78. doi: 10.1139/Y09-136

223. Zhai L, Huang T, Xiao HT, Wu PG, Lin CY, Ning ZW, et al. Berberine
suppresses colonic inflammation in dextran sulfate sodium–induced murine colitis
through inhibition of cytosolic phospholipase A2 activity. Front Pharmacol (2020)
11:576496/FULL. doi: 10.3389/FPHAR.2020.576496/FULL

224. Jauregui-Amezaga A, Geerits A, Das Y, Lemmens B, Sagaert X, Bessissow T,
et al. A simplified geboes score for ulcerative colitis. J Crohns Colitis (2017) 11:305–13.
doi: 10.1093/ECCO-JCC/JJW154

225. Kaiser AE, Baniasadi M, Giansiracusa D, Giansiracusa M, Garcia M, Fryda Z,
et al. Sulforaphane: A broccoli bioactive phytocompound with cancer preventive
potential. Cancers (Basel) (2021) 13(19):4796. doi: 10.3390/CANCERS13194796

226. Wei LY, Zhang JK, Zheng L, Chen Y. The functional role of sulforaphane in
intestinal inflammation: a review. Food Funct (2022) 13:514–29. doi: 10.1039/
D1FO03398K

227. Youn HS, Kim YS, Park ZY, Kim SY, Choi NY, Joung SM, et al. Sulforaphane
suppresses oligomerization of TLR4 in a thiol-dependent manner. J Immunol (2010)
184:411–9. doi: 10.4049/JIMMUNOL.0803988

228. Zhang Y, Tan L, Li C, Wu H, Ran D, Zhang Z. Sulforaphane alter the
microbiota and mitigate colitis severity on mice ulcerative colitis induced by DSS.
AMB Express (2020) 10:119. doi: 10.1186/S13568-020-01053-Z

229. Eun MK, Hye JK, Kim S, Woo HC, Yeon HC, Shi YR, et al. Modulation of
macrophage functions by compounds isolated from Zingiber officinale. Planta Med
(2009) 75:148–51. doi: 10.1055/S-0028-1088347

230. Han Q, Yuan Q, Meng X, Huo J, Bao Y, Xie G. 6-Shogaol attenuates LPS-
induced inflammation in BV2 microglia cells by activating PPAR-g. Oncotarget (2017)
8:42001–6. doi: 10.18632/ONCOTARGET.16719

231. Ahn S i, Lee JK, Youn HS. Inhibition of homodimerization of toll-like receptor
4 by 6-shogaol. Mol Cells (2009) 27:211–5. doi: 10.1007/S10059-009-0026-Y

232. Park SJ, Lee MY, Son BS, Youn HS. TBK1-targeted suppression of TRIF-
dependent signaling pathway of Toll-like receptors by 6-shogaol, an active component
of ginger. Biosci Biotechnol Biochem (2009) 73:1474–8. doi: 10.1271/BBB.80738

233. Krysko D v., Denecker G, Festjens N, Gabriels S, Parthoens E, D’Herde K, et al.
Macrophages use different internalization mechanisms to clear apoptotic and necrotic
cells. Cell Death Differ (2006) 13:2011–22. doi: 10.1038/SJ.CDD.4401900

234. Park SH, Kyeong MS, Hwang Y, Ryu SY, Han SB, Kim Y. Inhibition of LPS
binding to MD-2 co-receptor for suppressing TLR4-mediated expression of
inflammatory cytokine by 1-dehydro-10-gingerdione from dietary ginger. Biochem
Biophys Res Commun (2012) 419:735–40. doi: 10.1016/J.BBRC.2012.02.091

235. Lee HY, Park SH, Lee M, Kim HJ, Ryu SY, Kim ND, et al. 1-Dehydro-[10]-
gingerdione from ginger inhibits IKKb activity for NF-kB activation and suppresses
NF-kB-regulated expression of inflammatory genes. Br J Pharmacol (2012) 167:128–40.
doi: 10.1111/J.1476-5381.2012.01980.X
Frontiers in Endocrinology 22
236. Sadeghi Poor Ranjbar F, Mohammadyari F, Omidvar A, Nikzad F, Doozandeh
Nargesi N, Varmazyar M, et al. Zingiber officinale (Ginger) as a treatment for
inflammatory bowel disease: A review of current literature. Front Drug Discovery
(2022) 2:1043617. doi: 10.3389/FDDSV.2022.1043617

237. Tigas S, Tsatsoulis A. Endocrine and metabolic manifestations in inflammatory
bowel disease. Ann Gastroenterol (2012) 25:37.

238. Bar RS, Hoak JC, Peacock ML. Insulin receptors in human endothelial cells:
identification and characterization. J Clin Endocrinol Metab (1978) 47:699–702.
doi: 10.1210/JCEM-47-3-699

239. Bar RS, Kahn CR, Koren HS. Insulin inhibition of antibody-dependent
cytoxicity and insulin receptors in macrophages. Nature (1977) 265:632–5.
doi: 10.1038/265632A0

240. Peers SH, Moon D, Flower RJ. Reversal of the anti-inflammatory effects of
dexamethasone by the glucocorticoid antagonist RU 38486. Biochem Pharmacol (1988)
37:556–7. doi: 10.1016/0006-2952(88)90230-4

241. Laue L, Kawai S, Brandon DD, Brightwell D, Barnes K, Knazek RA, et al.
Receptor-mediated effects of glucocorticoids on inflammation: enhancement of the
inflammatory response with a glucocorticoid antagonist. J Steroid Biochem (1988)
29:591–8. doi: 10.1016/0022-4731(88)90156-2

242. Tsurufuji S, Sugio K, Takemasa F. The role of glucocorticoid receptor and gene
expression in the anti-inflammatory action of dexamethasone. Nature (1979) 280:408–
10. doi: 10.1038/280408A0

243. Garcia-Leme J, Farsky SP. Hormonal control of inflammatory responses.
Mediators Inflammation (1993) 2:181. doi: 10.1155/S0962935193000250

244. Rolston VS, Boroujerdi L, Long MD, McGovern DPB, Chen W, Martin CF,
et al. The influence of hormonal fluctuation on inflammatory bowel disease symptom
severity—A cross-sectional cohort study. Inflammation Bowel Dis (2018) 24:387.
doi: 10.1093/IBD/IZX004

245. Bellanti F, Matteo M, Rollo T, De Rosario F, Greco P, Vendemiale G, et al. Sex
hormones modulate circulating antioxidant enzymes: impact of estrogen therapy.
Redox Biol (2013) 1:340–6. doi: 10.1016/J.REDOX.2013.05.003

246. Diaz-Flores M, Baiza-Gutman LA, Pedrón NN, Hicks JJ. Uterine glutathione
reductase activity: Modulation by estrogens and progesterone. Life Sci (1999) 65:2481–
8. doi: 10.1016/S0024-3205(99)00514-7

247. Huh K, Shin US, Choi JW, Lee S. Effect of sex hormones on lipid peroxidation
in rat liver. Arch Pharm Res (1994) 17:109–14. doi: 10.1007/BF02974233

248. Persky AM, Green PS, Stubley L, Howell CO, Zaulyanov L, Brazeau GA, et al.
Protective effect of estrogens against oxidative damage to heart and skeletal muscle in
vivo and in vitro. Proc Soc Exp Biol Med (2000) 223:59–66. doi: 10.1046/J.1525-
1373.2000.22308.X

249. Xu L, Huang G, Cong Y, Yu Y, Li Y. Sex-related differences in inflammatory
bowel diseases: the potential role of sex hormones. Inflammation Bowel Dis (2022)
28:1766–75. doi: 10.1093/IBD/IZAC094

250. Klebanoff SJ. Effect of estrogens on the myeloperoxidase-mediated
antimicrobial system. Infect Immun (1979) 25:153–6. doi: 10.1128/iai.25.1.153-
156.1979
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