5 research outputs found

    The fickle Mutation of a Cytoplasmic Tyrosine Kinase Effects Sensitization but not Dishabituation in Drosophila Melanogaster

    Get PDF
    fickle is a P-element mutation identified from a screen for defects in courtship behavior and disrupts the fly homolog of Bruton's tyrosine kinase (Btk) gene (Baba et al., 1999). Here, we show that habituation of the olfactory jump reflex also is defective in fickle. Unlike, the prototypical memory mutants, rutabaga and dunce, which habituate more slowly than normal, fickle flies habituate faster than normal. fickle's faster-than-normal response decrement did not appear to be due to sensorimotor fatigue, and dishabituation of the jump response was normal. Based on a long-standing “two opponent process” theory of habituation, these data suggested that behavioral sensitization might be defective in fickle. To test this hypothesis, we designed a olfactory sensitization procedure, using the same stimuli to habituate (odor) and dishabituate (vortexing) flies. Mutant flies failed to show any sensitization with this procedure. Our study reveals a “genetic dissection” of sensitization and dishabituation and, for the first time, provides a biological confirmation of the two opponent process theory of habituation

    Stimulus-induced response patterns of medium-embedded neurons

    No full text
    Neuronal ensembles in living organisms are often embedded in a media that provides additional interaction pathways and autoregulation. The underlying mechanisms include but are not limited to modulatory activity of some distantly propagated neuromediators like serotonin, variation of extracellular potassium concentration in brain tissue, and calcium waves propagation in networks of astrocytes. Interaction of these diverse processes can lead to formation of complex spatiotemporal patterns, both self-sustained or triggered by external signal. Besides network effects, many dynamical features of such systems originate from reciprocal interaction between single neuron and surrounding medium. In the present paper we study the response of such systems to the application of a single stimulus pulse. We use a minimal mathematical model representing a forced excitable unit that is embedded in a diffusive or (spatially inhomogeneous) excitable medium. We illustrate three different mechanisms for the formation of response patterns: (i) self-sustained depolarization, (ii) propagation of depolarization due to “nearest-neighbor” networks, and (iii) re-entrant waves
    corecore