8,006 research outputs found
Ag and Au Atoms Intercalated in Bilayer Heterostructures of Transition Metal Dichalcogenides and Graphene
The diffusive motion of metal nanoparticles Au and Ag on monolayer and
between bilayer heterostructures of transition metal dichalcogenides and
graphene are investigated in the framework of density functional theory. We
found that the minimum energy barriers for diffusion and the possibility of
cluster formation depend strongly on both the type of nanoparticle and the type
of monolayers and bilayers. Moreover, the tendency to form clusters of Ag and
Au can be tuned by creating various bilayers. Tunability of the diffusion
characteristics of adatoms in van der Waals heterostructures holds promise for
controllable growth of nanostructures.Comment: accepted, APL Ma
Quantum Transport Characteristics of Lateral pn-Junction of Single Layer TiS3
Using density functional theory and nonequilibrium Greens functions-based
methods we investigated the electronic and transport properties of monolayer
TiS3 pn-junction. We constructed a lateral pn-junction in monolayer TiS3 by
using Li and F adatoms. An applied bias voltage caused significant variability
in the electronic and transport properties of the TiS3 pn-junction. In
addition, spin dependent current-voltage characteristics of the constructed
TiS3 pn-junction were analyzed. Important device characteristics were found
such as negative differential resistance and rectifying diode behaviors for
spin-polarized currents in the TiS3 pn-junction. These prominent conduction
properties of TiS3 pn-junction offer remarkable opportunities for the design of
nanoelectronic devices based on a recently synthesized single-layered material
Controlling Polymer Capture and Translocation by Electrostatic Polymer-Pore Interactions
Polymer translocation experiments typically involve anionic polyelectrolytes
such as DNA molecules driven through negatively charged nanopores. Quantitative
modelling of polymer capture to the nanopore followed by translocation
therefore necessitates the consideration of the electrostatic barrier resulting
from like-charge polymer-pore interactions. To this end, in this work we couple
mean-field level electrohydrodynamic equations with the Smoluchowski formalism
to characterize the interplay between the electrostatic barrier, the
electrophoretic drift, and the electro-osmotic liquid flow. In particular, we
find that due to distinct ion density regimes where the salt screening of the
drift and barrier effects occur, there exists a characteristic salt
concentration maximizing the probability of barrier-limited polymer capture
into the pore. We also show that in the barrier-dominated regime, the polymer
translocation time increases exponentially with the membrane charge and decays
exponentially fast with the pore radius and the salt concentration. These
results suggest that the alteration of these parameters in the barrier-driven
regime can be an efficient way to control the duration of the translocation
process and facilitate more accurate measurements of the ionic current signal
in the pore
-AlN-Mg(OH) vdW Bilayer Heterostructure: Tuning the excitonic characteristics
Motivated by recent studies that reported the successful synthesis of
monolayer Mg(OH) [Suslu \textit{et al.}, Sci. Rep. \textbf{6}, 20525
(2016)] and hexagonal (\textit{h}-)AlN [Tsipas \textit{et al}., Appl. Phys.
Lett. \textbf{103}, 251605 (2013)], we investigate structural, electronic, and
optical properties of vertically stacked -AlN and Mg(OH), through
\textit{ab initio} density-functional theory (DFT), many-body quasi-particle
calculations within the GW approximation, and the Bethe-Salpeter equation
(BSE). It is obtained that the bilayer heterostructure prefers the
stacking having direct band gap at the with Type-II band
alignment in which the valance band maximum and conduction band minimum
originate from different layer. Regarding the optical properties, the imaginary
part of the dielectric function of the individual layers and hetero-bilayer are
investigated. The hetero-bilayer possesses excitonic peaks which appear only
after the construction of the hetero-bilayer. The lowest three exciton peaks
are detailedly analyzed by means of band decomposed charge density and the
oscillator strength. Furthermore, the wave function calculation shows that the
first peak of the hetero-bilayer originates from spatially indirect exciton
where the electron and hole localized at -AlN and Mg(OH),
respectively, which is important for the light harvesting applications.Comment: Accepted by Physical Review
Phonon Softening and Direct to Indirect Bandgap Crossover in Strained Single Layer MoSe2
Motivated by recent experimental observations of Tongay et al. [Tongay et
al., Nano Letters, 12(11), 5576 (2012)] we show how the electronic properties
and Raman characteristics of single layer MoSe2 are affected by elastic biaxial
strain. We found that with increasing strain: (1) the E' and E" Raman peaks
(E1g and E2g in bulk) exhibit significant red shifts (up to 30 cm-1), (2) the
position of the A1' peak remains at 180 cm-1 (A1g in bulk) and does not change
considerably with further strain, (3) the dispersion of low energy flexural
phonons crosses over from quadratic to linear and (4) the electronic band
structure undergoes a direct to indirect bandgap crossover under 3% biaxial
tensile strain. Thus the application of strain appears to be a promising
approach for a rapid and reversible tuning of the electronic, vibrational and
optical properties of single layer MoSe2 and similar MX2 dichalcogenides.Comment: http://link.aps.org/doi/10.1103/PhysRevB.87.12541
Spintronic properties of zigzag-edged triangular graphene flakes
Cataloged from PDF version of article.We investigate quantum transport properties of triangular graphene flakes with zigzag edges by using first principles calculations. Triangular graphene flakes have large magnetic moments which vary with the number of hydrogen atoms terminating its edge atoms and scale with its size. Electronic transmission and current-voltage characteristics of these flakes, when contacted with metallic electrodes, reveal spin valve and remarkable rectification features. The transition from ferromagnetic to antiferromagnetic state under bias voltage can, however, terminate the spin polarizing effects for specific flakes. Geometry and size dependent transport properties of graphene flakes may be crucial for spintronic nanodevice applications. (C) 2010 American Institute of Physics. [doi:10.1063/1.3489919
- …