2 research outputs found

    Hybrid exosomes, exosome-like nanovesicles and engineered exosomes for therapeutic applications

    No full text
    Exosomes are endosome-derived nanovesicles involved in cellular communication. They are natural nanocarriers secreted by various cells, making them suitable candidates for diverse drug delivery and therapeutic applications from a material standpoint. They have a phospholipid bilayer decorated with functional molecules and an enclosed parental matrix, which has attracted interest in developing designer/hybrid engineered exosome nanocarriers. The structural versatility of exosomes allows the modification of their original configuration using various methods, including genetic engineering, chemical procedures, physical techniques, and microfluidic technology, to load exosomes with additional cargo for expanded biomedical applications. Exosomes show enormous potential for overcoming the limitations of conventional nanoparticle-based techniques in targeted therapy. This review highlights the exosome sources, characteristics, state of the art in the field of hybrid exosomes, exosome-like nanovesicles and engineered exosomes as potential cargo delivery vehicles for therapeutic applications.Peer reviewe

    Mechanism of iron integration into LiMn1.5Ni0.5O₄ for the electrocatalytic oxygen evolution reaction

    No full text
    Abstract Spinel-type LiMn1.5Ni0.5O₄ has been paid temendrous consideration as an electrode material because of its low cost, high voltage, and stabilized electrochemical performance. Here, we demonstrate the mechanism of iron (Fe) integration into LiMn1.5Ni0.5O₄ via solution methods followed by calcination at a high temparature, as an efficient electrocatalyst for water splitting. Various microscopic and structural characterizations of the crystal structure affirmed the integration of Fe into the LiMn1.5Ni0.5O₄ lattice and the constitution of the cubic LiMn1.38Fe0.12Ni0.5O₄ crystal. Local structure analysis around Fe by extended X-ray absorption fine structure (EXAFS) showed Fe3+ ions in a six-coordinated octahedral environment, demonstrating incorporation of Fe as a substitute at the Mn site in the LiMn1.5Ni0.5O₄ host. EXAFS also confirmed that the perfectly ordered LiMn1.5Ni0.5O₄ spinel structure becomes disturbed by the fractional cationic substitution and also stabilizes the LiMn1.5Ni0.5O₄ structure with structural disorder of the Ni²⁺ and Mn⁴⁺ ions in the 16d octahedral sites by Fe²⁺ and Fe³⁺ ions. However, we have found that Mn³⁺ ion production from the redox reaction between Mn⁴⁺ and Fe²⁺ influences the electronic conductivity significantly, resulting in improved electrochemical oxygen evolution reaction (OER) activity for the LiMn1.38Fe0.12Ni0.5O4 structure. Surface-enhanced Fe in LiMn1.38Fe0.12Ni0.5O₄ serves as the electrocatalytic active site for OER, which was verified by the density functional theory study
    corecore