4,648 research outputs found

    Deep Learning for Detecting Multiple Space-Time Action Tubes in Videos

    Get PDF
    In this work, we propose an approach to the spatiotemporal localisation (detection) and classification of multiple concurrent actions within temporally untrimmed videos. Our framework is composed of three stages. In stage 1, appearance and motion detection networks are employed to localise and score actions from colour images and optical flow. In stage 2, the appearance network detections are boosted by combining them with the motion detection scores, in proportion to their respective spatial overlap. In stage 3, sequences of detection boxes most likely to be associated with a single action instance, called action tubes, are constructed by solving two energy maximisation problems via dynamic programming. While in the first pass, action paths spanning the whole video are built by linking detection boxes over time using their class-specific scores and their spatial overlap, in the second pass, temporal trimming is performed by ensuring label consistency for all constituting detection boxes. We demonstrate the performance of our algorithm on the challenging UCF101, J-HMDB-21 and LIRIS-HARL datasets, achieving new state-of-the-art results across the board and significantly increasing detection speed at test time. We achieve a huge leap forward in action detection performance and report a 20% and 11% gain in mAP (mean average precision) on UCF-101 and J-HMDB-21 datasets respectively when compared to the state-of-the-art.Comment: Accepted by British Machine Vision Conference 201

    Magnetic Properties of RTSb3

    Get PDF
    Magnetization, electrical resistivity, and thermal expansion measurements have been performed on polycrystalline RTSb3 (R=La, Ce, Pr, Nd, Gd, Tb, and Dy; T=Cr, V) samples in order to study their magnetic properties. Depending on the rare-earth element, RTSb3 has been found to have either a purely ferromagnetic (or antiferromagnetic) phase or combination of antiferromagnetic (lower-temperature) and ferromagnetic (higher-temperature) phases. The antiferromagnetic order evolves from the ferromagnetic order as a result of the competition between R3+ and Cr3+ ions. As R is changed from La to Dy, the antiferromagnetic ordering of the R3+ ions becomes more prominent and predominate over the ferromagnetic ordering of Cr3+ for R=Gd, Tb, and Dy. Thermal expansion measurements show that the antiferromagnetic transition accompanies a drop in the sample dimension. The order of the ferromagnetic transition is found to be of the second order

    Coexistence of 1,3-butadiene conformers in ionisation energies and Dyson orbitals

    Get PDF
    The minimum-energy structures on the torsional potential-energy surface of 1,3-butadiene have been studied quantum mechanically using a range of models including ab initio Hartree-Fock and second-order Møller-Plesset theories, outer valence Green’s function, and density-functional theory with a hybrid functional and statistical average orbital potential model in order to understand the binding-energy ionization energy spectra and orbital cross sections observed by experiments. The unique full geometry optimization process locates the s-trans-1,3-butadiene as the global minimum structure and the s-gauche-1,3-butadiene as the local minimum structure. The latter possesses the dihedral angle of the central carbon bond of 32.81° in agreement with the range of 30°–41° obtained by other theoretical models. Ionization energies in the outer valence space of the conformer pair have been obtained using Hartree-Fock, outer valence Green’s function, and density-functional statistical average orbital potentials models, respectively. The Hartree-Fock results indicate that electron correlation and orbital relaxation effects become more significant towards the inner shell. The spectroscopic pole strengths calculated in the Green’s function model are in the range of 0.85–0.91, suggesting that the independent particle picture is a good approximation in the present study. The binding energies from the density-functional statisticaly averaged orbital potential model are in good agreement with photoelectron spectroscopy, and the simulated Dyson orbitals in momentum space approximated by the density-functional orbitals using plane-wave impulse approximation agree well with those from experimental electron momentum spectroscopy. The coexistence of the conformer pair under the experimental conditions is supported by the approximated experimental binding-energy spectra due to the split conformer orbital energies, as well as the orbital momentum distributions of the mixed conformer pair observed in the orbital cross sections of electron momentum spectroscopy

    Automatic incrementalization of prolog based static analyses

    Get PDF
    Abstract. Modern development environments integrate various static analyses into the build process. Analyses that analyze the whole project whenever the project changes are impractical in this context. We present an approach to automatic incrementalization of analyses that are specified as tabled logic programs and evaluated using incremental tabled evaluation, a technique for efficiently updating memo tables in response to changes in facts and rules. The approach has been implemented and integrated into the Eclipse IDE. Our measurements show that this technique is effective for automatically incrementalizing a broad range of static analyses.

    Hartman Testing of X-Ray Telescopes

    Get PDF
    Hartmann testing of x-ray telescopes is a simple test method to retrieve and analyze alignment errors and low-order circumferential errors of x-ray telescopes and their components. A narrow slit is scanned along the circumference of the telescope in front of the mirror and the centroids of the images are calculated. From the centroid data, alignment errors, radius variation errors, and cone-angle variation errors can be calculated. Mean cone angle, mean radial height (average radius), and the focal length of the telescope can also be estimated if the centroid data is measured at multiple focal plane locations. In this paper we present the basic equations that are used in the analysis process. These equations can be applied to full circumference or segmented x-ray telescopes. We use the Optical Surface Analysis Code (OSAC) to model a segmented x-ray telescope and show that the derived equations and accompanying analysis retrieves the alignment errors and low order circumferential errors accurately

    NTN-based 6G Localization: Vision, Role of LEOs, and Open Problems

    Full text link
    Since the introduction of 5G Release 18, non-terrestrial networks (NTNs) based positioning has garnered significant interest due to its numerous applications, including emergency services, lawful intercept, and charging and tariff services. This release considers single low-earth-orbit (LEO) positioning explicitly for location verification\textit{location verification} purposes, which requires a fairly coarse location estimate. To understand the future trajectory of NTN-based localization in 6G, we first provide a comprehensive overview of the evolution of 3rd Generation Partnership Project (3GPP) localization techniques, with specific emphasis on the current activities in 5G related to NTN location verification. We then delineate the suitability of LEOs for location-based services and emphasize increased interest in LEO-based positioning. In order to provide support for more accurate positioning in 6G using LEOs, we identify two NTN positioning systems that are likely study items for 6G: (i) multi-LEO positioning, and (ii) augmenting single-LEO and multi-LEO setups with Global Navigation Satellite System (GNSS), especially when an insufficient number of GNSS satellites (such as 2) are visible. We evaluate the accuracy of both systems through a 3GPP-compliant simulation study using a Cram\'{e}r-Rao lower bound (CRLB) analysis. Our findings suggest that NTN technology has significant potential to provide accurate positioning of UEs in scenarios where GNSS signals may be weak or unavailable, but there are technical challenges in accommodating these solutions in 3GPP. We conclude with a discussion on the research landscape and key open problems related to NTN-based positioning.Comment: 7 pages, 6 figures, submitted to IEEE Wireless Communications Magazin
    • …
    corecore