206 research outputs found
Reshaping food science, technology and engineering education embracing nutrition integration and sustainability
A recent global survey taken among food professionals that included more than 700 respondents, mainly food scientists and technologists (FST) and food engineers (FE), revealed that the food industry has significant major roles impacting many education attributes. It included: academic partnership and collaboration (ranked #1), sustainability, circular economy food waste management, internships, and the most influential professional organization considering education. It was quite surprising that almost 70% of the respondents were affiliated with academia, the majority with a PhD and above. On the other hand, the food industry suffers from a very low image for many nutritionists that are promoting ultra-processed foods (UPFs). For instance, “… these products are highly palatable, cheap, ubiquitous, and contain preservatives that offer a long shelf life. These features, combined with aggressive industry marketing strategies, contribute to excessive consumption and make these products highly profitable for the food, beverage, and restaurant industry sectors that are dominant actors in the global food system” (Monteiro et al., 2019). This discrepancy between the FST and FE reflection of the food industry and a large number of nutritionists calls for a new paradigm to overcome the chasm separating these two domains. The professional study showed that the concept of enhanced integration with nutrition received a weighted average value of almost ‘high’ (on a Likert-type scale). This opens a new avenue for innovative and paradigm shift considerations such as mutual curricula, industrial internships, and novel methodologies for education such as project-based learning, hybrid-learning, the flipped classroom, design thinking, personalization, and sustainability. These new ideas will be covered.info:eu-repo/semantics/publishedVersio
Possible interactions between selected food processing and medications
The impact of food processing on drug absorption, metabolism, and subsequent pharmacological activity is a pressing yet insufficiently explored area of research. Overlooking food-processing-drug interactions can significantly disrupt optimal clinical patient management. The challenges extend beyond merely considering the type and timing of food ingestion as to drug uptake; the specific food processing methods applied play a pivotal role. This study delves into both selected thermal and non-thermal food processing techniques, investigating their potential interference with the established pharmacokinetics of medications. Within the realm of thermal processing, conventional methods like deep fat frying, grilling, or barbecuing not only reduce the enteric absorption of drugs but also may give rise to side-products such as acrylamide, aldehydes, oxysterols, and oxyphytosterols. When produced in elevated quantities, these compounds exhibit enterotoxic and pro-inflammatory effects, potentially impacting the metabolism of various medications. Of note, a variety of thermal processing is frequently adopted during the preparation of diverse traditional herbal medicines. Conversely, circumventing high heat through innovative approaches (e.g., high-pressure processing, pulsed electric fields, plasma technology), opens new avenues to improve food quality, efficiency, bioavailability, and sustainability. However, it is crucial to exercise caution to prevent the excessive uptake of active compounds in specific patient categories. The potential interactions between food processing methods and their consequences, whether beneficial or adverse, on drug interactions can pose health hazards in certain cases. Recognizing this knowledge gap underscores the urgency for intensified and targeted scientific inquiry into the multitude of conceivable interactions among food composition, processing methods, and pharmaceutical agents. A thorough investigation into the underlying mechanisms is imperative. The complexity of this field requires substantial scrutiny and collaborative efforts across diverse domains, including medicine, pharmacology, nutrition, food science, food technology, and food engineering
Obesity, the Endocannabinoid System, and Bias Arising from Pharmaceutical Sponsorship
Previous research has shown that academic physicians conflicted by funding from the pharmaceutical industry have corrupted evidence based medicine and helped enlarge the market for drugs. Physicians made pharmaceutical-friendly statements, engaged in disease mongering, and signed biased review articles ghost-authored by corporate employees. This paper tested the hypothesis that bias affects review articles regarding rimonabant, an anti-obesity drug that blocks the central cannabinoid receptor.A MEDLINE search was performed for rimonabant review articles, limited to articles authored by USA physicians who served as consultants for the company that manufactures rimonabant. Extracted articles were examined for industry-friendly bias, identified by three methods: analysis with a validated instrument for monitoring bias in continuing medical education (CME); analysis for bias defined as statements that ran contrary to external evidence; and a tally of misrepresentations about the endocannabinoid system. Eight review articles were identified, but only three disclosed authors' financial conflicts of interest, despite easily accessible information to the contrary. The Takhar CME bias instrument demonstrated statistically significant bias in all the review articles. Biased statements that were nearly identical reappeared in the articles, including disease mongering, exaggerating rimonabant's efficacy and safety, lack of criticisms regarding rimonabant clinical trials, and speculations about surrogate markers stated as facts. Distinctive and identical misrepresentations regarding the endocannabinoid system also reappeared in articles by different authors.The findings are characteristic of bias that arises from financial conflicts of interest, and suggestive of ghostwriting by a common author. Resolutions for this scenario are proposed
Computational shelf-life dating : complex systems approaches to food quality and safety
Shelf-life is defined as the time that a product is acceptable and meets the consumers expectations regarding food quality. It is the result of the conjunction of all services in production, distribution, and consumption. Shelf-life dating is one of the most difficult tasks in food engineering. Market pressure has lead to the implementation of shelf-life by sensory analyses, which may not reflect the full quality spectra. Moreover, traditional methods for shelf-life dating and small-scale distribution chain tests cannot reproduce in a laboratory the real conditions of storage, distribution, and consumption on food quality. Today, food engineers are facing the challenges to monitor, diagnose, and control the quality and safety of food products. The advent of nanotechnology, multivariate sensors, information systems, and complex systems will revolutionize the way we manage, distribute, and consume foods. The informed consumer demands foods, under the legal standards, at low cost, high standards of nutritional, sensory, and health benefits. To accommodate the new paradigms, we herein present a critical review of shelf-life dating approaches with special emphasis in computational systems and future trends on complex systems methodologies applied to the prediction of food quality and safety.Fundo Europeu de Desenvolvimento Regional (FEDER) - Programa POS-ConhecimentoFundação para a Ciência e a Tecnologia (FCT) - SFRH/BPD/26133/2005, SFRH/ BPD/20735/200
Sucrose in the concentrated solution or the supercooled “state” : a review of caramelisation reactions and physical behaviour
Sucrose is probably one of the most studied molecules by food scientists, since it plays an important role as an ingredient or preserving agent in many formulations and technological processes. When sucrose is present in a product with a concentration near or greater than the saturation point—i.e. in the supercooled state—it possesses high potentialities for the food industry in areas as different as pastry industry, dairy and frozen desserts or films and coatings production. This paper presents a review on critical issues and research on highly concentrated sucrose solutions—mainly, on sucrose thermal degradation and relaxation behaviour in such solutions. The reviewed works allow identifying several issues with great potential for contributing to significant advances in Food Science and Technology.Authors are grateful for the valuable discussions with Teresa S. Brandao and Rosiane Lopes da Cunha during this research. Author M. A. C. Quintas acknowledges the financial support of her research by FCT grant SFRH/BPD/41715/2007
- …