1,134 research outputs found

    Multi-temporal time-dependent terrain visualization through localized spatial correspondence parameterization

    Get PDF
    Visualizing quantitative time-dependent changes in the topography requires relying on a series of discrete given multi-temporal topographic datasets that were acquired on a given time-line. The reality of physical phenomenon occurring during the acquisition times is complex when trying to mutually model the datasets; thus, different levels of spatial inter-relations and geometric inconsistencies among the datasets exist. Any straight forward simulation will result in a truncated, ill-correct and un-smooth visualization. A desired quantitative and qualitative modelling is presumed to describe morphologic changes that occurred, so it can be utilized to carry out more precise and true-to-nature visualization tasks, while trying to best describe the reality transition as it occurred. This research paper suggests adopting a fully automatic hierarchical modelling mechanism, hence implementing several levels of spatial correspondence between the topographic datasets. This quantification is then utilized for the datasets morphing and blending tasks required for intermediate scene visualization. The establishment of a digital model that stores the local spatial transformation parameterization correspondences between the topographic datasets is realized. Along with designated interpolation concepts, this complete process ensures that the visualized transition from one topographic dataset to the other via the quantified correspondences is smooth and continuous, while maintaining morphological and topological relations. © 2013 by the authors; licensee MDPI, Basel, Switzerland

    A quest for frustration driven distortion in Y2Mo2O7

    Full text link
    We investigated the nature of the freezing in the geometrically frustrated Heisenberg spin-glass Y2Mo2O7 by measuring the temperature dependence of the static internal magnetic field distribution above the spin-glass temperature, Tg, using the muSR technique. The evolution of the field distribution cannot be explained by changes in the spin susceptibility alone and suggests a lattice deformation. This possibility is addressed by numerical simulations of the Heisenberg Hamiltonian with magneto-elastic coupling at T>0.Comment: 5 pages 4 figures. Accepted for publication in PR

    Ramsey-like measurement of the decoherence rate between Zeeman sub-levels

    Full text link
    Two-photon processes that involve different sub-levels of the ground state of an atom, are highly sensitive to depopulation and decoherence within the ground state. For example, the spectral width of electromagnetically induced transparency resonances in Λ−\Lambda-type system, are strongly affected by the ground state depopulation and decoherence rates. We present a direct measurement of decay rates between hyperfine and Zeeman sub-levels in the ground state of 87^{87}Rb vapor. Similar to the relaxation-in-the-dark technique, pumping lasers are used to pre-align the atomic vapor in a well defined quantum state. The free propagation of the atomic state is monitored using a Ramsey-like method. Coherence times in the range 1-10 ms were measured for room temperature atomic vapor. In the range of the experimental parameters used in this study, the dominant process inducing Zeeman decoherence is the spin-exchange collisions between rubidium atoms.Comment: 7 pages, 7 figure

    Motional Broadening in Ensembles With Heavy-Tail Frequency Distribution

    Full text link
    We show that the spectrum of an ensemble of two-level systems can be broadened through `resetting' discrete fluctuations, in contrast to the well-known motional-narrowing effect. We establish that the condition for the onset of motional broadening is that the ensemble frequency distribution has heavy tails with a diverging first moment. We find that the asymptotic motional-broadened lineshape is a Lorentzian, and derive an expression for its width. We explain why motional broadening persists up to some fluctuation rate, even when there is a physical upper cutoff to the frequency distribution.Comment: 6 pages, 4 figure

    Order-by-disorder in the antiferromagnetic Ising model on an elastic triangular lattice

    Full text link
    Geometrically frustrated materials have a ground-state degeneracy that may be lifted by subtle effects, such as higher order interactions causing small energetic preferences for ordered structures. Alternatively, ordering may result from entropic differences between configurations in an effect termed order-by-disorder. Motivated by recent experiments in a frustrated colloidal system in which ordering is suspected to result from entropy, we consider in this paper, the antiferromagnetic Ising model on a deformable triangular lattice. We calculate the displacements exactly at the microscopic level, and contrary to previous studies, find a partially disordered ground state of randomly zigzagging stripes. Each such configuration is deformed differently and thus has a unique phonon spectrum with distinct entropy, thus lifting the degeneracy at finite temperature. Nonetheless, due to the free-energy barriers between the ground-state configurations, the system falls into a disordered glassy state.Comment: Accepted to PNA

    Assigning Diagnosis Codes Using Medication History

    Get PDF
    Diagnosis assignment is the process of assigning disease codes to patients. Automatic diagnosis assignment has the potential to validate code assignments, correct erroneous codes, and register completion. Previous methods build on text-based techniques utilizing medical notes but are inapplicable in the absence of these notes. We propose using patients' medication data to assign diagnosis codes. We present a proof-of-concept study using medical data from an American dataset (MIMIC-III) and Danish nationwide registers to train a machine-learning-based model that predicts an extensive collection of diagnosis codes for multiple levels of aggregation over a disease hierarchy. We further suggest a specialized loss function designed to utilize the innate hierarchical nature of the disease hierarchy. We evaluate the proposed method on a subset of 567 disease codes. Moreover, we investigate the technique's generalizability and transferability by (1) training and testing models on the same subsets of disease codes over the two medical datasets and (2) training models on the American dataset while evaluating them on the Danish dataset, respectively. Results demonstrate the proposed method can correctly assign diagnosis codes on multiple levels of aggregation from the disease hierarchy over the American dataset with recall 70.0% and precision 69.48% for top-10 assigned codes; thereby being comparable to text-based techniques. Furthermore, the specialized loss function performs consistently better than the non-hierarchical state-of-the-art version. Moreover, results suggest the proposed method is language and dataset-agnostic, with initial indications of transferability over subsets of disease codes

    NMR characterization of spin-1/2 alternating antiferromagnetic chains in the high-pressure phase of (VO)2P2O7

    Full text link
    Local-susceptibility measurements via the NMR shifts of 31^{31}P and 51^{51}V nuclei in the high-pressure phase of (VO)2_{2}P2_{2}O7_{7} confirmed the existence of a unique alternating antiferromagnetic chain with a zero-field spin gap of 34 K. The 31^{31}P nuclear spin-lattice relaxation rate scales with the uniform spin susceptibility below about 15 K which shows that the temperature dependence of both the static and dynamical spin susceptibilities becomes identical at temperatures not far below the spin-gap energy.Comment: 6 pages, 5 figures; To be published in J. Phys. Condens. Matte

    Direct Measurement of the System-Environment Coupling as a Tool For Understanding Decoherence and Dynamical Decoupling

    Full text link
    Decoherence is a major obstacle to any practical implementation of quantum information processing. One of the leading strategies to reduce decoherence is dynamical decoupling --- the use of an external field to average out the effect of the environment. The decoherence rate under any control field can be calculated if the spectrum of the coupling to the environment is known. We present a direct measurement of the bath coupling spectrum in an ensemble of optically trapped ultracold atoms, by applying a spectrally narrow-band control field. The measured spectrum follows a Lorentzian shape at low frequencies, but exhibits non-monotonic features at higher frequencies due to the oscillatory motion of the atoms in the trap. These features agree with our analytical models and numerical Monte-Carlo simulations of the collisional bath. From the inferred bath-coupling spectrum, we predict the performance of well-known dynamical decoupling sequences: CPMG, UDD and CDD. We then apply these sequences in experiment and compare the results to predictions, finding good agreement in the weak-coupling limit. Thus, our work establishes experimentally the validity of the overlap integral formalism, and is an important step towards the implementation of an optimal dynamical decoupling sequence for a given measured bath spectrum.Comment: 9 pages, 6 figure

    Ion-pairing chromatography and amine derivatization provide complementary approaches for the targeted LC-MS analysis of the polar metabolome.

    Get PDF
    Liquid chromatography coupled to mass spectrometry is a key metabolomics/metabonomics technology. Reversed-phase liquid chromatography (RPLC) is very widely used as a separation step, but typically has poor retention of highly polar metabolites. Here, we evaluated the combination of two alternative methods for improving retention of polar metabolites based on 6-aminoquinoloyl-N-hydroxysuccinidimyl carbamate derivatization for amine groups, and ion-pairing chromatography (IPC) using tributylamine as an ion-pairing agent to retain acids. We compared both of these methods to RPLC and also to each other, for targeted analysis using a triple-quadrupole mass spectrometer, applied to a library of ca. 500 polar metabolites. IPC and derivatization were complementary in terms of their coverage: combined, they improved the proportion of metabolites with good retention to 91%, compared to just 39% for RPLC alone. The combined method was assessed by analyzing a set of liver extracts from aged male and female mice that had been treated with the polyphenol compound ampelopsin. Not only were a number of significantly changed metabolites detected, but also it could be shown that there was a clear interaction between ampelopsin treatment and sex, in that the direction of metabolite change was opposite for males and females
    • …
    corecore