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Assigning Diagnosis Codes using Medication History

Emil Riis Hansen1,∗, Tomer Sagi1,2, Katja Hose1, Gregory Y. H. Lip3,6, Torben
Bjerregaard Larsen3,5, Flemming Skjøth3,4

Abstract

Diagnosis assignment is the process of assigning disease codes to patients. Au-

tomatic diagnosis assignment has the potential to validate code assignments,

correct erroneous codes, and register completion. Previous methods build on

text-based techniques utilizing medical notes but are inapplicable in the ab-

sence of these notes. We propose using patients’ medication data to assign

diagnosis codes. We present a proof-of-concept study using medical data from

an American dataset (MIMIC-III) and Danish nationwide registers to train a

machine-learning-based model that predicts an extensive collection of diagnosis

codes for multiple levels of aggregation over a disease hierarchy. We further

suggest a specialized loss function designed to utilize the innate hierarchical na-

ture of the disease hierarchy. We evaluate the proposed method on a subset of

567 disease codes. Moreover, we investigate the technique’s generalizability and

transferability by (1) training and testing models on the same subsets of disease

codes over the two medical datasets and (2) training models on the the Ameri-
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can dataset while evaluating them on the Danish dataset, respectively. Results

demonstrate the proposed method can correctly assign diagnosis codes on mul-

tiple levels of aggregation from the disease hierarchy over the American dataset

with recall 70.0% and precision 69.48% for top-10 assigned codes; thereby being

comparable to text-based techniques. Furthermore, the specialised loss function

performs consistently better than the non-hierarchical state-of-the-art version.

Moreover, results suggest the proposed method is language and dataset-agnostic,

with initial indications of transferability over subsets of disease codes.

Keywords: diagnosis assignment, patient profiling, medication, machine

learning

1. Introduction

The practice of coding diagnoses of medical conditions using standardized

vocabularies of disease codes such as ICD-10 [1] has steadily grown. However,

while coding systems are in widespread use, coding quality is uneven. Coding a

medical diagnosis is notoriously complex. There exist multiple hierarchies and5

choosing the appropriate code requires a deep understanding of their structure

and the relationships. For example, in a review of 1800 injury discharges from

a New Zealand hospital, Davie et al. [2] found 2% to be uncoded, and 14% of

principal injury diagnosis codes and 26% of external cause codes to be inaccu-

rately coded. Wockenfuss et al. [3] determined that ICD-10 three and four level10

codes are too detailed to be reliable for general practitioners by measuring the

Kappa inter-rater agreement scores.

Some work exists on predicting diagnoses from laboratory results (e.g., [4]),

however, it is limited to cases where such results are available and relevant. A

large body of work exists on extracting diagnoses from clinical notes and reports15

(see review [5]). However, the performance of these systems relies on techniques

that tend to work much better in English and must be retrained for every new

language [6].

A patient’s current medication can shed valuable light on their existing med-
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ical conditions. For example, observing that a patient has a long-term prescrip-20

tion for Metoprolol usually indicates that he/she is suffering from hypertension

or ischaemic heart disease. Generalizing upon this observation, in this work,

we develop a machine-learning-based model able to predict the list of diagnoses

assigned to a patient based on his/her medications. Thus, such a model could

provide emergency responders and critical care facilities with a rapid assessment25

of a patient’s existing conditions in addition to the model’s utility in diagnosis

quality control. For example, an unconscious patient with a history of diabetes

will be first assessed for hyper/hypoglycemia. In contrast, one without a his-

tory of diabetes but with a history of heart disease will be first assessed for

acute heart conditions, such as a heart attack. We assess the viability of our30

approach using the publicly available American dataset (MIMIC-III) [7] and a

Danish dataset combining prescription and diagnosis register data [8, 9] denoted

DNPR in the following. While MIMIC-III contains rigorously anonymized and

detailed medical records for over 50K intensive care unit (ICU) patients, DNPR

contains data from an unselected population on disease codes from Danish hos-35

pital admissions and medication prescription history from Danish pharmacies.

This work extends our previous paper [10] in three ways. We investigate

the generalizability and transferability of our approach by extensive experimen-

tation on the Danish DNPR dataset. We investigate different aspects of het-

erogeneity between MIMIC-III and DNPR and provide results for comparable40

non-medication-based methods.

The rest of the paper is structured as follows. In Section 2 we review related

work. In Section 3 we describe MIMIC-III and DNPR, comparing and contrast-

ing the two datasets. In Section 4 we detail our proposed method. In Section 5

we describe our experimental setup. In Section 6 we report experimental find-45

ings and provide results for text-based methods. We discuss the implications of

the results in Section 7 while concluding and providing opportunities for future

work in Section 8.
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2. Related Work

Several studies justify the need to perform quality control of diagnosis code50

assignment. Cooke et al. [11] have shown that an ICD-9 code as a predictor of

true chronic obstructive pulmonary disease had a sensitivity of 76% and speci-

ficity of 67% using spirometry as their gold standard. A comprehensive review

of Danish validation studies on the Danish national patient registry [12] showed

that the positive predictive values of disease and treatments varies from 15% to55

100%. Recent work attempted to predict ICD-9 assignment in MIMIC-III from

discharge notes [13]. Their solution to the multi-label multi-level problem was to

limit the number of labels or aggregate predicted codes into categories, thereby

solving two different problems, namely to predict the top-10/50 codes or the top

10/50 categories. In this work, we aim to predict a large set of codes at different60

aggregation levels to examine which codes and code groups are predictable from

medication data.

There have been a few attempts to use prescription data to predict a single

or at most two conditions. Schmidt et. al. developed and validated an algo-

rithm with 87% accuracy able to identify herpes zoster [14]. In another study,65

prescription data was used to classify whether or not patients had preexisting

conditions of diabetes or hypertension [15]. In a recent review [16] of algorithms

designed to extract cases for medical research from electronic medical records

data, some of the studies use medication data. However, all studies extract

cases for a single condition, often aggregating several diagnosis codes. In our70

scenario, we identify the probable diagnosis codes of multiple conditions at once

and thus identify cases where improbable diagnosis codes have been used.

3. Data and Heterogeneity

In this section we introduce the MIMIC-III and DNPR datasets and specify

our steps of data preprocessing. Furthermore, to understand the heterogeneity75

between the datasets, we investigate and highlight their main differences.
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3.1. MIMIC-III

We use MIMIC-III [7] from PhysioNet [17], electronic health record (EHR)

data for 50K patients who stayed in critical care units (ICU) of the Beth Israel

Deaconess Medical Center for 11 years. MIMIC-III contains an extensive variety80

of data, including lab results, vital signs, medical notes, and most importantly

for our needs, drugs administered, and diagnoses ascertained. MIMIC-III is

structured as a relational database consisting of multiple tables. For instance,

MIMIC-III contains a table for drug data, a table for diagnosis data, and a

table for general patient information enclosing patient age, gender etc. The85

drug data table (model input) contains four million rows of drugs adminis-

tered during 58, 976 admissions. There are 4, 525 different drug names in the

DRUG field, which are often the same drug, with different spelling or with an

added comment, e.g., Basiliximab and *NF* Basiliximab. To disambiguate and

standardize the codes we use a mapping of MIMIC-III terms to the Observa-90

tional Medical Outputs Partnerships (OMOP) Common Data Model (CDM)

concepts [18] and group them by Clinical Drug Form to receive 1, 602 RxNorm

drug codes.

The diagnosis table (expected output) contains 651, 047 diagnoses for 58, 976

admissions using 6, 984 different ICD-9 codes. ICD-9 is a hierarchical grouping95

of disease codes that consists of 5 levels starting from 0 (most general), to 4

(most specific). ICD-9 is built on the basis of grouping similar diseases. Upon

review, we omit 6, 110 codes for which less than 100 cases exist as it is typically

not possible to generalize from such a low number. We further omit several codes

focusing on diagnoses for persistent conditions not treatable by medication. A100

complete and detailed description of omissions can be found in Appendix A.

We use the patient table to add the age in years upon admission and gender

to the model input normalized as described in Section 3.3.

3.2. DNPR

To evaluate the generalizability of the proposed method, including its language-105

agnostic nature, we combine the two Danish datasets "The Danish National
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Patient Register" [8] and "The Danish National Prescription Registry" [9]. The

Danish National Patient Register is the Danish national register of diagnosis

data, which contains diagnosis codes assigned during patient hospitalizations.

The register contains patient records since 1977. The Danish National Pre-110

scription Registry contains prescription data for all prescriptions sold in Den-

mark though pharmacies since 1994. The registers can be combined patient-wise

though the Danish unique personal identification number which is used through-

out in Danish registers. Demographic and vital status information is obtained

from the Central Person Register [19]. Throughout this work we refer to the115

combination of these three registers as DNPR. Due to the continuous approval

of new drugs and expanding hierarchy of disease, we limit data from DNPR to

the same range of years as MIMIC-III (2002 - 2012)

The combined register DNPR is structured as a relational database. It

contains tables for patient diagnoses, prescribed drugs and general patient in-120

formation among others. A main difference between MIMIC-III and DNPR is

their different utilization of drug and disease vocabularies. Whereas MIMIC-

III uses ICD-9 to code disease, DNPR uses a Danish extension of ICD-10

called The Danish Health Authority Classification System (SKS). Furthermore,

DNPR utilizes the World Health Organization’s (WHOs) Anatomical Thera-125

peutic Classification (ATC) [20] for coding prescription drugs. DNPR contains

6, 273, 158 prescriptions (model input) and 2, 351, 769 diagnoses (expected out-

put) for 2, 093, 987 admissions. Each admission (both inpatient and outpatient)

consists of one or multiple diseases (both primary and secondary codes) diag-

nosed during hospitalization and all prescriptions administered to the patient130

within 30 days before and after diagnosis as illustrated in Figure 1. In addition,

we add patient age and gender to the model input normalized as described in

Section 3.3.

3.3. Homogenization

Due to the differences between MIMIC and DNPR, a homogenization of the135

datasets is required. As MIMIC-III and DNPR are coded using different disease
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and medication vocabularies, we created mappings to convert the DNPR disease

and prescription codes to the code systems used in MIMIC-III. As detailed in

Sections 3.4.1 and 3.4.2, based on many-to-many general equivalence mappings

(GAMs) [21] and the OMOP CDM concept mappings, we managed to create a140

mapping for converting disease codes between ICD-9 and ICD-10-SKS as well

as one for converting prescriptions from RxNorm to ATC. We map 567 unique

ICD-9 codes to 320 unique ICD-10-SKS codes and 1602 unique RxNorm drug

concepts to 834 unique ATC codes. Furthermore, MIMIC-III hides elderly pa-

tients (over 89 years) due to anonymization concerns and reports the age of145

92.4 for each of these. We normalize the age of all patients from MIMIC-III by

dividing it by 92.4; a practice that is beneficial in machine learning techniques.

We normalize the age of patients from DNPR using the same approach by first

calculating the average age of elderly patients (over 89 years), then reporting

elderly patients with the average age, and finally dividing all patients by the150

average age of the elderly. When joining the prescription, diagnosis, and patient

tables for MIMIC-III, we end up with 48K admissions for 38K different patients

using 567 unique codes, referred to as labels in the following.

3.4. Data Heterogeneity

MIMIC-III and DNPR both consist of drug prescriptions and diagnosed155

diseases albeit they are collected for different purposes. Whereas MIMIC-III is

collected in an insurance financed setting, DNPR is collected for administrative

purposes but in a tax financed setting naturally leading to data heterogeneity.

The main difference between MIMIC-III and DNPR is the way prescription

data is gathered. While diagnosis codes from MIMIC-III and DNPR are both160

assigned while the patient is hospitalized, prescription data from DNPR differs

from MIMIC-III by not consisting of the medicine administered during hospi-

talization but rather the medicine taken before and after release as illustrated

in Figure 1. Furthermore, since MIMIC-III consists of ICU patients often hos-

pitalized with acute disease, the purpose of drug administration will initially165

be patient stabilization. On the other hand, the purpose of DNPR prescription
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data is directed at treating the disease diagnosed at release, as well as chronic

conditions present before and after hospitalization (e.g., diabetes).

MIMIC

DNPR

Admission Discharge

Diagnosis
Prescription

Time

Figure 1: Differences between MIMIC-III and DNPR in terms of prescription data gathering.

An orange box represents the time of diagnosis assignment and a blue box represents the

time span for which prescription medicine consumption data is gathered. Whereas MIMIC-

III contains information on prescription data from time of admission until release, DNPR only

contains prescription data taken before and after the patient is released from the hospital.

3.4.1. Disease vocabularies

Although MIMIC-III and DNPR both utilize the ICD disease code hierar-170

chy for standardized patient diagnosis, the hierarchy is used in different ways

based on the purpose of the databases. Since subtle changes in disease codes

can cause major changes to the final patient bill, MIMIC-III disease codes have

to be as specific as possible. Comparatively, Danish physicians are not too con-

cerned with the precision of specifying diagnosis codes as long as other clinicians175

can understand the patient’s symptomatology. As an example, a patient from

MIMIC-III might get diagnosed with the billable diagnosis code 280.1 - "Iron

deficiency anemias - secondary to inadequate dietary iron intake", whilst a pa-

tient from DNPR will be diagnosed with the less specific diagnosis code 280 -

"Iron deficiency anemias", which is a non-billable ICD code.180

For many years, ICD has been used globally and has thus gone through sev-

eral iterations to accommodate new disease and better disease hierarchy struc-

tures. Whereas Denmark has been using the 10th version of ICD (ICD-10) since

1994, MIMIC-III patients have been diagnosed using the ICD-9 disease hierar-

chy. Furthermore, DNPR is coded using a Danish extension of ICD-10 called185
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Figure 2: (a) RxNorm to ATC mapping. The mapping between RxNorm concepts and ATC

codes forms a many-to-many relationship between the two vocabularies. This can be seen by

the two RxNorm concepts x
′
3 and x

′
4 both mapping to the ATC concept y

′
3 and the RxNorm

concept x
′
2 mapping to the two ATC concepts y

′
1 and y

′
2. As an example, the RxNorm con-

cepts "Digoxin Injection" and "Digoxin Oral Tablet" both map to the ATC concept "digoxin"

and the ATC concepts "triamterene" and "hydrochlorothiazide" both map to the RxNorm

concept "Hydrochlorothiazide / Triamterene Oral Tablet". (b) ICD-9 to ICD-10-SKS map-

ping. The mapping forms a many-to-many relationship between the two vocabularies as seen

by subsets s
′

and p
′
. Furthermore, some codes only have one corresponding code from the

other vocabulary, thus we create the sets s
′′ ⊂ s

′
and p

′′ ⊂ p
′

which have a one-to-one rela-

tionship. All mappings have been made available through an online data repository [22].

The Danish Health Authority Classification System (SKS) which extends the

ICD-10 by introducing new branches of diseases and removing some codes that

were originally in ICD-10. A bijective mapping between ICD-9 and ICD-10

is not possible due to the big changes between ICD versions [21]; however, a

many-to-many mapping exists7 as illustrated in Figure 2(b) by the subset s
′

190

mapping to the subset p
′
. Additionally, we create subsets s

′′ ⊂ s
′

and p
′′ ⊂ p

′

of ICD-9 and ICD-10-SKS codes respectively for which there exists a one-to-one

mapping between the sets; this is illustrated in Figure 2 as the sets s
′′

and p
′′
.

From the initial 567 ICD-9 codes with more than 100 MIMIC-III patient cases,

we managed to map 320 unique ICD-9 codes to 532 ICD-10-SKS codes using195

the following procedure.

7https://www.cms.gov/Medicare/Coding/ICD10/2018-ICD-10-CM-and-GEMs
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We utilize a many-to-many general equivalence mapping (GAM) between

leaf nodes of the ICD-9 and ICD-10 disease hierarchies and consequently map

558 ICD-9 codes to 2525 ICD-10 codes. However, 1967 ICD-10 codes do not

automatically correspond to ICD-10-SKS codes which results in 558 mappings200

from ICD-9 to ICD-10-SKS with 320 Unique ICD-9 codes mapping to 532 unique

ICD-10-SKS codes forming a many-to-many relational mapping. Furthermore,

we found a subset of 148 relations forming a one-to-one mapping between the

two vocabularies.

3.4.2. Prescription vocabularies205

Adding to the heterogeneous nature of prescription data, MIMIC-III and

DNPR use different medicine vocabularies. Whereas MIMIC-III can be mapped

to the RxNorm drug vocabulary using the OMOP CDM maps, DNPR is coded

using the anatomical therapeutic classification (ATC). To compare the datasets

we create a mapping from ATC codes to the RxNorm drug vocabulary using the210

OMOP CDM concept hierarchy. This results in a many-to-many mapping as

seen in Figure 2(a). Furthermore, the mapping is only partial since the OMOP

CDM concept hierarchy has missing links between the two vocabularies. From

the initial 1602 RxNorm drug codes, we were able to map 1257 unique RxNorm

drug codes, illustrated as the set x
′ ⊂ x in Figure 2, to 834 unique ATC drug215

codes, illustrated as the set y
′ ⊂ y in Figure 2, with 1351 relations between x

′

and y
′
.

3.4.3. Statistical Heterogeneity

Of the resulting 834 mappable ATC codes, 771 are used at least once for

patients from DNPR. Furthermore, counting only the 1, 257 mappable drugs,220

the total number of drugs given to patients from MIMIC-III is 1, 129, 677 with

an average of 23.72 drugs per patient case. In contrast, 6, 273, 158 drugs are

prescribed to patients from DNPR averaging at 3.00 drugs per patient case.

Likewise, using the many-to-many disease code mapping, we found that of the

320 unique ICD-9 disease codes, 307 have been assigned to patients from the225
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DNPR dataset. MIMIC-III has 47, 634 patient cases with a total of 282, 150 as-

signed disease codes which gives an average of 5.94 diseases per patient. DNPR

has 2, 093, 987 patient cases with a total of 2, 351, 769 diagnosed disease, aver-

aging at 1.12 disease per patient. The distribution of patients diagnosed with

each of the 320 mappable ICD-9 codes is illustrated in Figure 3.230

(a) (b)

Figure 3: Distribution of patient cases with assigned ICD-9 codes. (a) The distribution of

diagnosed patients for each of the 320 predictable ICD-9 codes. As illustrated, Q3 of DNPR

codes is below the interquartile range of MIMIC-III codes. For the sake of readability, no

percentage above 3 is shown. However, MIMIC-III has 29 outliers not shown on the figure and

DNPR has 3. (b) The distribution of the top-10 used ICD-9 codes in MIMIC. As illustrated,

all disease codes are used more frequently in MIMIC-III as compared to DNPR.

4. Hierarchical Multi-label Classification (HMC)

Binary classification problems (e.g., has this person received treatment re-

lated to sepsis) aim to correctly classify each task as either positive or negative.

Single-label multi-class problems (e.g., is the following brain magnetic reso-

nance imaging (MRI) normal or does it contain a glioblastoma, a sarcoma, or235

a metastatic bronchogenic carcinoma?) extend the classification to allow more

than one class for each task. These two types of Machine Learning (ML) tasks

are, by far, the most commonly studied in the medical domain. Less common
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are multi-label classification problems, which attempt to assign a set of labels to

each example (e.g., which of the ICD-9 codes should be assigned following this240

medical report [23]), each of the labels is drawn from a possible set of classes.

Since each person may have multiple co-morbidities, the task of assigning the

correct set of diagnosis codes can be characterized as a multi-label classification

problem [24]. The hierarchical nature of diagnoses both complicates the task

and offers an opportunity to improve the applicability of an ML model. If an245

algorithm predicts a patient suffering from non-specified chirosis (ICD-9 code

571.5) to be suffering from alcoholic chirosis (ICD-9 code 571.2) it should be

more appreciated than if no chirosis related diagnoses are returned since both

codes share a common ancestor. Further hierarchical constraints may dictate

that a person cannot have more than one label from the same sub-tree of codes.250

Since ICD-9 is indeed hierarchical and imposes such constraints on some of its

sub-trees, we can classify our task as a hierarchical multi-label classification

(HMC) problem.

4.1. Machine Learning and Loss Functions

Many approaches to HMC include splitting the problem into multiple simple255

(single label) classification tasks, each of which is trained separately. Within

these approaches, local and global approaches [25] differ by the number of clas-

sifiers trained. In the local case, multiple classifiers are trained over a binary

label pertaining to a single node in the hierarchy and the predictions of each

level are subsequently propagated [26]. In the global case, the labels are se-260

lected from a set of all possible labels. In this work, we follow the observation of

Cerri et al. [27] that by training a single global classifier based on a multi-level

neural network representation, one can effectively reuse the high-level features

learned to discriminate between high levels in the hierarchy and then refine

these to more accurate code assignments using the subsequent levels of the neu-265

ral network. Furthermore, deep neural networks (DNN) have repeatedly shown

superiority over other techniques in the medical domain (e.g., [28], [29]). We

therefore employ a multi-layer perceptron, or fully connected neural network.
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The input layer for this network consists of one node for each RxNorm code

in the data (one for normalized age and one for biological sex) and the output270

layer of one node for each ICD-9 code at the chosen roll-up level.

Machine learning, in particular deep learning, uses a loss function during

the training phase to quantify the error of the current iteration of the model

with respect to the expected output. Choosing an appropriate loss function is

crucial and in general must reflect the structure of the expected output. Thus,275

specific loss functions have been suggested for the multi-label case [30] as well

as hierarchical multi-label functions [31]. However, these are tied directly to

the structure of the global classifier, and none have been applied in the medical

data setting using the inherent hierarchy of a medical taxonomy.

We therefore experiment with two types of loss functions, ml and hml as280

described below. One suitable for the multi-label case, where each missed label

is treated the same regardless of the extent of the mistake (ml, Eq. 1), and

one designed for the HMC case. For the general multi-label case, we chose the

multi-label soft margin loss function [32], defined as follows with C being the

number of classes, y being the class indicator, and x the current value of the285

corresponding output node (i iterates over all classes).

loss(x, y) = − 1

C

∑
i

y[i]·log((1+exp(−x[i]))−1)+(1−y[i])·log
(

exp(−x[i])

(1 + exp(−x[i]))

)
(1)

We model our HMC loss function (hml, Eq. 2) after the one developed for

HMCN-F [31] while adjusting it to account for the differences between a text-

classification problem and our own task and minimize a function comprised of

two components.290

Lhml = LL + LG (2)

LL is the local loss – calculation of Eq. 1 at the leaf level. LG is calculated

by rolling up the results one layer at a time until the ICD-9 chapter level (0).

At each phase of the roll-up, the predictions for each inner node are set to the

13



average of the predictions over its children. The loss of each level is calculated

and summed to the other levels. Since our neural network does not directly295

predict the global scores, we do not suffer from hierarchical violations and do

not require the third component that penalizes them in HMCN-F. We employ

Roll Up Roll Up
L0 .....
L1 .....
L2 .....
L3 .....
L4 .....

A-L4 B-L3 C-L2

a

b c d

e f

g h

i

j k

a bc d e f gh i jk

abc de fgh ijk

Figure 4: Example of the roll up algorithm. An example level 4 code assignment is shown

as tree A-L4. Disease codes {b, c, d, g, h, j, k} are level 4 codes, whereas codes {a, e, f, i} are

codes on level 3. Red circles are the registered comorbidities of the patient. Green circles are

diseases not recorded in the patient.

the Roll Up method to aggregate diagnoses given the ICD-9 hierarchy (see

example in Figure 4). Leaf node of the ICD-9 hierarchy can be assigned to

patients. However, not all leaves are on the same level. As an example, 322.2300

is a level 3 code, which represents Chronic meningitis, whereas code 003.22 is

a level 4 code for Salmonella pneumonia. Each patient starts with one or more

codes from the ICD-9 hierarchy.

5. Experimental Setup

In this section, we introduce the experimental setups for evaluating different305

aspects of our proposed method. We evaluate the proposed method’s overall per-

formance by investigating the model’s performance on the MIMIC-III dataset.

Furthermore, we relate the model’s performance to baseline results from several

textual-based diagnosis assignment methods. To evaluate the method’s general-

izability, we investigate the model’s performance on the Danish DNPR dataset310

comparing it to the performance of MIMIC-III when trained and evaluated on

the same sets of ICD-9 disease codes. Finally, we investigate the model’s trans-

ferability properties by training a model on the MIMIC-III dataset whilst testing

the model on the DNPR dataset.
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5.1. Diagnosis assignment using medication data (proposed method)315

To evaluate the proposed method of using medication data to assign diag-

nosis codes, we train, evaluate and test hml and ml models on the MIMIC-III

dataset with an 80/10/10 train/evaluate/test data split.

Utilizing the roll up method for initial data transformation, we perform ex-

periments on different prediction resolutions, with level 0 corresponding to the320

chapter level of ICD-9 (e.g., 520–579: diseases of the digestive system) with 16

possible codes and level 1 to the code group level (e.g., 401-405 Hypertensive

Disease) with 65 possible codes. Our last level corresponds to the most detailed

available in the ICD-9 hierarchy (level 4) with 567 possible codes as identified in

Section 3.1. Furthermore, we experiment with a Top-10 (level 4) setting and a325

Top-10 (Level 0) setting in terms of the most prevalent MIMIC-III codes. Fur-

thermore, for each experiment, we perform a classic hyperparameter search over

the number of internal layers and the number of nodes in each layer over the fol-

lowing values and ranges - Activation function: [Rectified Unit, Sigmoid], Batch

Size: [32 - 2048], layer Dropout : [0.001 - 0.1], Layer Sizes: [1 - 4 layers, 128330

- 512 perceptrons]. For each prediction resolution and parameter combination,

we train and evaluate an hml and an ml model.

5.2. Generalizability

Generalizability should be understood as the model’s ability to perform well

on new datasets and in new settings. To investigate the proposed method’s335

generalizability, we evaluate the model on the Danish DNPR dataset. DNPR

is an ideal target for evaluating the method’s generalizability due to the het-

erogeneity between MIMIC and DNPR as detailed in Section 3.4. Since DNPR

is coded using a different disease vocabulary and prescription vocabulary than

that of MIMIC-III, the generalizability experiment reveals the dataset-agnostic340

and language-agnostic nature of the proposed method.

The experimental setup for the generalizability experiments are summarized

in Table 1. Experiments are performed using ICD-9 (level 4) codes on hml

and ml models. Furthermore, all experiments are trained, evaluated, and tested
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Experiment Codes Disease Mapping Train Test

M - M (multi) 320 k−1 : p
′ → s

′
38, 107 4, 763

M - M (bijection) 148 r−1 : p
′′ → s

′′
32, 228 4, 028

M - M (Top 50) 50 k−1 : p
′ → s

′
30, 367 3, 795

M - M (Top 10) 10 k−1 : p
′ → s

′
23, 286 2, 910

D - D (multi) 306 k−1 : p
′ → s

′
1, 675, 189 209, 398

D - D (bijection) 142 r−1 : p
′′ → s

′′
561, 789 70, 223

D - D (Top 50) 50 k−1 : p
′ → s

′
315, 007 39, 375

D - D (Top 10) 10 k−1 : p
′ → s

′
171, 372 21, 421

Table 1: Experimental settings for evaluating the generalizability of the proposed method.

M and D stand for MIMIC-III and DNPR respectively. Experiment is the name of the

experiment where letters on the left and right side of the dash stand for the dataset used for

training and testing respectively. Codes are the number of different disease predicted in the

experiment. Train and Evaluation are the number of admissions for training and testing the

model. Due to server limitations, hyperparameter optimization through standard grid search

was not possible. Instead, model parameters were held constant for all experiments with the

following settings - Batch Size: 256, Activation Function: Rectified Unit, Layer Dropout:

0.01, Layer Sizes: [512, 256, 128, 256]

on an 80/10/10 data split. The DNPR data is hosted on a government server345

with severely restricted access and computational power thus limiting our ability

to perform parameter grid search to tune the models. Hence, all experiments

use the same parameter settings which can be found in the legend of Table 1.

5.3. Transferability

Transferability is the model’s ability to work in a different setting from350

the setting in which it has been originally trained. We evaluate the proposed

method’s transferability by training a model on the MIMIC-III dataset while

testing the model on the DNPR dataset. The transferability experiments are

listed in Table 2. To ensure data compatibility, we preprocess the DNPR dataset

by translating the model input and output according to the taxonomy mappings355

developed in Section 3.4.2 and Section 3.4.1 as illustrated in Figure 2. All exper-
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iments are done for the most detailed level of ICD-9 (level 4) using both an hml

and ml model. Due to server limitations, model parameter optimization is not

possible. Model parameter settings are held constant, as listed in Table 2. All

transferability experiments are trained and evaluated on an 80/20 MIMIC data360

split while tested on all DNPR data.

5.4. Experimentation Settings

For the generalizability and transferability experiments as described in Sec-

tions 5.2 and 5.3, we experiment with multiple settings of disease codes and

hierarchies. Each setting has a different rationale and clinical application in365

hospital settings.

The multi experiments utilize the k−1 disease mapping as described in Sec-

tion 3.4.1. k−1 establishes a many-to-many link between diseases of the ICD-9

vocabulary and that of the ICD-10 vocabulary. In total, we were able to map 320

ICD-9 codes to ICD-10 codes using this mapping. The mapping is a naive con-370

version method since the mapping from ICD-10 to ICD-9 merges several ICD-10

codes into a single ICD-9 code. However, since most groups of merged ICD-10

codes are very similar, it should be uncommon for patients to loose important

disease information when using the mapping. Furthermore, this mapping keeps

many of the original disease codes from the 567 ICD-9 code set. A model based375

on such a mapping can be used in a clinical setting for various purposes such

as automatic disease code assignment, as a validation tool for manual disease

code assignment, for finding registry errors, or as a clinical tool for assessing the

disease history of a patient based on the patients prescription history.

To evaluate the performance of one-to-one corresponding codes from ICD-9380

and ICD-10, we created a bijective mapping function R−1 to map ICD-10 disease

codes to ICD-9 disease codes. The experiments using this mapping are mainly

used to investigate the performance of a model when mitigating the problems

introduced by many-to-many mappings.

Top 10 (level 4) and top 50 (level 4) experiments use the top 10 and top 50385

diagnosed codes. Previous diagnosis assignment approaches [33, 34] have used
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top 10 and top 50 codes for experimentation. To be comparable with other

approaches for diagnosis assignment on the MIMIC-III dataset, we chose to

incorporate these experimental settings as well.

Experiment Codes Disease Mapping Train Test

M - D (multi) 320 k−1 : p
′ → s

′
47, 634 2, 093, 987

M - D (bijection) 148 r−1 : p
′′ → s

′′
40, 286 693, 950

M - D (Top 50) 50 k−1 : p
′ → s

′
37, 959 389, 344

M - D (Top 10) 10 k−1 : p
′ → s

′
29, 108 211, 579

Table 2: Experimental settings for evaluating the transferability of the proposed method.

M and D stand for MIMIC-III and DNPR, respectively. The description of the legend and

experiments follows the same format as that of Table 1.

5.5. Comparison to text-based methods390

We evaluated several textual-based approaches similar to those proposed

by [33] for diagnosis assignment on different sets of the 567 MIMIC-III codes de-

scribed in Section 3.1. We evaluated a Convolutional Neural Network (CNN) [35],

a Recurrent Neural Network followed by a Gated Recurrent Unit (GRU), and a

Convolutional Neural Network with Attention (CNN-att) [33].395

The evaluated text-based methods treat ICD-9 code prediction as a multi-

label classification problem. The input for text-based methods are the textual

discharge summaries for patient stays, and the output is the ICD-9 codes as-

signed to the patient. To compare against our approach, we evaluate each of

the three text-based models in a Top-10 (level 4) setting and a Raw (Level 4)400

setting, with Top-10 occurring MIMIC-III (level 4) codes and the set of all 567

MIMIC-III (level 4) codes, respectively.

The convolutional neural network we evaluate against, as described in [33],

works as follows. As an initial data transformation step, the discharge sum-

mary notes are transformed into a feature matrix by substituting each word405

using pre-trained de-dimensional word embeddings to create an embedding ma-

trix X = [x1, x2, ..., xN ], where N is the length of the document. A convolution
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layer then applies a convolutional filter Wc ∈ Rk×de×dc , where dc is the size of

the filter output, to X, to produce a convolution matrix H. A global average

pooling layer is then applied to H to generate a feature for each corresponding410

disease to classify. The only difference between the CNN and the GRU network

architecture is that a gated recurrent unit layer replaces the convolution layer

from the CNN-based architecture. The CNN-att model utilizes a per-label at-

tention mechanism since different parts of the convolution H may be relevant for

different labels. The attention mechanism learns a vector parameter ul ∈ Rdc415

for each disease label. By doing matrix multiplication between ul and H and

using a softmax function to normalize over all words from the input file, an

attention vector al is learned for each label. The intuition behind al is that it

learns which words in a document are important for classifying a specific label

l.420

5.6. Baseline

We introduced a statistics based disease code assignment approach as a base-

line method for the task of disease code assignment. The approach is based on

the statistical prior that patients are more likely to be diagnosed with common

diseases than rare diseases. For each disease, we first calculate the dataset-425

specific probability of a patient having a disease. The assignment of patient

diseases then follows a schema of generating a random floating point number

between 0 and 100 for each patient for each disease. If the randomly generated

number is lower than or equal to the probability of having the disease, we assign

the diagnosis code to the patient. A good model should outperform this baseline430

by learning from the input features to choose against the statistical prior.

6. Experimental Results

This section presents the results obtained from the experimental settings

defined in Section 5. The obtained results are presented in separate sections

according to their experimental setting. To allow easy comparison between our435
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approach and techniques utilizing medical notes, we evaluate experimental re-

sults using the standard micro-averaged precision and recall and their harmonic

mean F1. The choice of experimental settings is described in Section 5.4.

6.1. Diagnosis assignment using medication data (Proposed Method)

To evaluate the proposed method, we trained several models on the MIMIC-440

III dataset for each ICD-9 level according to the experimental setup described in

Section 5.1. Table 3 presents the best results (by F1) obtained over MIMIC-III

using an 80/10/10 split by an hml mode following a standard hyper-parameter

grid search. In each task, the code assignments were rolled up before both the

training and the test phase and not only for evaluation, such that the neural445

network encountered a different task for each level. For each ICD-9 level, we

provide the number of codes in that level, the average branching factor, and the

average number of eventual leaves of a node in this level’s sub-tree. In addition

to precision, recall, and F1, we show the number of diagnosis codes for which F1

was equal to zero. Table 3 further presents the results of the baseline approach450

for easily comparing our proposed method against the baseline. We evaluate

the Raw (level 4), Top-10 (level 0) and Top-10 (level 4) tasks for the baseline.

R² = 0.2912
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Figure 5: F-1 by number of cases over level 2 codes.

Since MIMIC-III

is a relatively small

dataset, the number455

of cases for many di-

agnoses is too low to

expect good perfor-

mance. When ex-

amining the effect of460

the number of cases

on the model’s per-

formance (Fig. 5)

we find that at least

some of the variance can be explained by the small number of cases (R2 of 0.29465
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Prediction Task Codes Br. Avg.

Leaves

Prec. Recall F1 F1=0

Baseline

Top-10 (level 0) 10 NA NA 42.04 40.10 41.05 1

Top-10 (level 4) 10 NA NA 23.25 21.46 22.32 0

Raw (level 4) 567 0 0 8.79 8.24 8.51 402

Our Approach

Top-10 (level 0) 10 NA NA 69.48 70.23 70.01 0

Top-10 (level 4) 10 NA NA 52.38 70.00 59.92 0

Rolled Up (level 0) 16 5.7 565.1 68.46 69.27 68.86 0

Rolled Up (level 1) 65 8.4 108.3 58.05 57.21 57.63 10

Rolled Up (level 2) 236 6.6 14.0 48.45 47.19 47.81 83

Rolled Up (level 3) 461 1.6 1.6 37.36 41.61 39.37 195

Raw (level 4) 567 0 0 36.98 36.26 36.62 311

Table 3: MIMIC-III diagnosis prediction results for our approach and for the baseline. Br. is

the branching factor and Prec. is precision. F1=0 is the number of codes for which F1 was

equal to zero.

for a linear model). Top-5/top-10 results by code are available as an online

appendix containing the full results [22].

To assess the effect of using a hierarchical multi-label loss function (hml)

versus a standard multi-label loss function (ml) we examine all experimental

results from the proposed method experiment as described in Section 5.1 where470

the F1 was at least 5.0. Models trained using hml consistently out-performed

those trained using ml with an average F1 result between 3− 8% better. This

result holds when comparing the max values obtained in each level with a 2−7%

improvement for levels 2− 4, although no significant improvement was seen for

level 1. This last result is expected since the roll-up process for this level only475

rolls up to level 0.
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6.2. Generalizability Results

To investigate the proposed method’s generalizability, we compare the per-

formance of models trained on the MIMIC-III dataset to models trained on the

same set of ICD-9 codes on the Danish DNPR dataset. The experimental set-480

ting is described in section 5.2. Results in terms of F1 scores for hml and ml

models grouped by experimental setting for all generalizability experiments are

illustrated in Figure 6.
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Figure 6: F1 scores for hml models grouped by the type of exper-

iment.

Even though the

two datasets are het-485

erogeneous in nature,

as described in Sec-

tion 3.4, results in-

dicate that the pro-

posed method pro-490

vides comparable pre-

dictive power for mod-

els trained on the

MIMIC-III dataset and

models trained on the495

DNPR dataset, for the same subsets of ICD-9 codes. Interestingly, models

trained on MIMIC-III outperform models trained on DNPR when the number

of predictable diseases is high. In contrast, the opposite is true when the number

of predictable diseases is low.

Furthermore, results obtained from the generalizability experiments further500

validate the superiority of using an hml model as illustrated by Figure 7, as hml

models persistently out-performed ml models on F1 scores by up to 7.5% with

an average performance increase of 3.1%.
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HML ML

Experiment Codes F1 Prec. Recall F1 Prec. Recall

M - M (multi) 320 39.93 40.16 39.71 37.30 36.53 38.12

M - M (bijection) 148 35.56 34.64 36.53 31.34 29.46 33.48

M - M (Top 50) 50 38.09 36.51 39.81 34.83 32.72 37.23

M - M (Top 10) 10 48.62 40.93 59.86 41.16 40.83 41.49

D - D (multi) 306 30.25 31.70 28.92 30.24 30.64 29.86

D - D (bijection) 142 25.42 20.43 33.61 24.42 24.36 26.57

D - D (Top 50) 50 38.55 36.25 41.16 38.09 35.14 41.58

D - D (Top 10) 10 63.16 59.54 67.25 57.38 52.42 63.38

Table 4: F1, precision and recall of generalizability experiments for hml and ml models. M

and D stand for MIMIC-III and DNPR respectively.

6.3. Transferability Results
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Figure 7: F1 scores for generalizability experiments as listed in

Table 1

To assess the pro-505

posed method’s trans-

ferability, we performed

experiments described

in Section 5.3. We

trained and evalu-510

ated a model on the

MIMIC-III dataset for

each transferability ex-

periment with an 80/20

data split while test-515

ing the model on the

whole DNPR dataset.

Results in terms of F1

score, precision and

recall for all transferability experiments for hml and ml models are presented520

in Table 2. Results in terms of F1 score range from 6.28 when trained and
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tested on 320 disease codes to 28.25 when trained and tested on the top-10

most prevalent MIMIC-III ICD-9 codes as summarized in Table 5. Although

transferability results indicate weak performance for models trained on the 320

ICD-9 codes, the performance improves as the prediction task gets easier.525

HML ML

Experiment Codes F1 Prec. Recall F1 Prec. Recall

M - D (multi) 320 6.28 7.38 5.46 5.46 4.72 6.49

M - D (bijection) 148 6.68 4.77 11.12 5.92 3.75 13.90

M - D (Top 50) 50 10.86 7.65 18.70 9.70 6.27 21.29

M - D (Top 10) 10 28.25 19.26 50.45 21.22 20.34 22.17

Table 5: F1, precision and recall of transferability experiments for hml and ml models. M

and D stands for MIMIC-III and DNPR respectively.

6.4. Results for text-based methods

To compare our work to text-based methods of diagnosis assignment, we ex-

perimented with implementations of several such methods. We evaluated state

of the art Convolutional Neural Network (CNN), a Recurrent Neural Network

followed by a Gated Recurrent Unit (GRU), and a Convolutional Neural Net-530

work with Attention (CNN-att) [33]. Results in terms of precision, recall, and

F1 for all textual techniques are listed in Table 6. The best result in terms of

F1 for the Top 10 (level 4) experiment was achieved with a CNN-att model with

a score of 82.74. In comparison, the best result for our proposed method on the

same set of codes is 59.92 as listed in Table 3. Similarly, whereas our proposed535

method achieved an F1 score of 36.62 when predicting the complete set of 567

ICD-9 codes (level 4), the best result for the text-based methods was achieved

on the CNN-att model with a score of 55.76.

We further present the results for the Top-10 (level 4) assigned diagnosis

codes for the text-based CNN model and our medication based HML model in540

Table 7. CNN predicts "Atrial fibrillation" with an F1 score of 89.66 whereas

HML predicts the same disease with an F1 score of 73.09. The best performing
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Model Codes Precision Recall F1

CNN Top 10 (level 4) 76.13 77.65 76.89

CNN Raw (level 4) 44.51 46.33 42.82

GRU Top 10 (level 4) 77.82 82.65 80.16

GRU Raw (level 4) 62.02 49.96 55.34

CNN-att Top 10 (level 4) 79.34 82.26 80.77

CNN-att Raw (level 4) 57.51 59.38 55.76

hml Top 10 (level 4) 54.24 67.92 60.31

hml Raw (level 4) 36.98 36.26 36.62

Table 6: Results of text-based methods of diagnosis assignment. Codes are the sets of ICD-9

disease codes used in the experiment. Top 10 (level 4) is the 10 most frequently used ICD-9

codes in MIMIC-III from the initial set of 567 codes. Raw (level 4) is the complete set of

567 ICD-9 codes. For comparison, the table contains the best results for medication-based

diagnosis code assignment for the same tasks.

class in terms of F1 score for the HML model is "Coronary atherosclerosis of

native coronary artery" with an F1 score of 68.84. CNN predicts the same code

with an F1 score of 77.23. Further results with the Top-10 assigned codes for545

the GRU and CNN-att text-based models are available as an online appendix

[22].

7. Discussion

This section discusses and reflects upon the experimental results for the

proposed method and its generalizability and transferability.550

7.1. Proposed method

In the top-10 setting, an hml model was trained to assign one or more diseases

to a patient among 10 unique ICD-9 disease codes. The model correctly assigned

codes in 69.48% of all cases and was able to find 70.23% of all disease codes as

summarized in Table 3.555
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HML CNN

Disease Prec. Recall F1 Prec. Recall F1

Atrial fibrillation 69.03 77.65 73.09 87.62 91.78 89.66

Coronary atherosclerosis

of native coronary artery

63.05 75.79 68.84 92.81 66.13 77.23

Unspecified essential hy-

pertension

55.54 85.65 67.38 70.72 90.84 79.53

Congestive heart failure;

unspecified

60.20 72.92 65.95 86.10 79.20 82.50

Acute respiratory failure 51.77 73.02 60.58 66.27 66.93 66.60

Acute kidney failure; un-

specified

45.23 62.50 52.48 77.48 45.43 57.27

Diabetes mellitus without

mention of complication

49.09 56.28 52.44 71.28 82.75 76.59

Urinary tract infection;

site not specified

42.09 61.58 50.00 71.68 70.13 70.90

Other and unspecified hy-

perlipidemia

44.72 49.48 46.98 77.96 76.26 77.10

Esophageal reflux 36.77 21.32 26.99 82.10 67.19 73.90

Table 7: F1, precision and recall of top-10 assigned ICD-9 codes for our medication-based hml

model and the text-based CNN model.

The results of the performance of the top-10 assigned codes setting shows

that text-based methods perform well in the diagnosis of all top-10 diseases as

summarized in Table 7. The results indicate that diagnosis observations are

diligently written down in clinical discharge notes, with a precision such that

text-based methods of diagnosis classification works well. Not surprisingly, it560

is more difficult to differentiate between diagnosis codes based on medication

since some medications can be used in various contexts for treating multiple

diseases. Furthermore, some diseases are not treated directly, but by adjusting

some other treatments if the disease is a side effect, such as is often the case
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with Esophageal reflux. Hence, the F1 score of 26.99 for the medication based565

prediction of Esophageal reflux. However, for 8 out of 9 top-10 assigned codes,

the F1 score for our medication based HML model was above 50.

The results are encouraging compared to the CNN, GRU and CNN-att tex-

tual methods of diagnosis assignment as illustrated in Figure 6. In these days

of computerized electronic health records, this approach offers a potential ap-570

plication to assign disease codes based on drugs prescribed automatically. The

approach may also provide opportunities to create quality control mechanisms

for diagnosis code assignments. The proposed method works in cases where

registers do not contain medical notes but contain patient medication history,

as in the Danish patient register DNPR.575

As summarized in Table 3, F1 scores improve as the task is simplified with

the worse performance obtained when the model tries to assign the correct code

from a set of 567 possible codes at level 4. The best performance is on level 0

when the model only has 16 possible labels. Consistently, in all experimental

conditions, precision and recall are approximately the same. Precision and recall580

are relatively low when predicting all 567 (level 4) codes. This result is partially

explained by codes and groups that their medication cannot differentiate, and

for which the model was unable to find any of the cases (F1=0). For example,

at level 4, the model could not predict any assignment of codes from chapter

780-799 (Symptoms, Signs, And Ill-Defined Conditions). This chapter may not585

be differentiable by medication, as it comprises symptoms for many underlying

conditions. Further analysis shows that prediction of neoplasms mostly fails, as

cancer treatment can be surgical or radiation-based. Furthermore, since MIMIC

contains only ICU records, the patient may not be currently undergoing any

medication-based cancer treatment.590

In addition, many diseases of the circulatory system were not differentiable

by medication. Some diseases are asymptomatic and will thus rarely be treated

by medication since the patient does not produce or show any symptoms re-

gardless of the presence of the disease. The branch of diseases under code 426

(Conduction Disorders) are mostly asymptomatic, such as 426.0 (Atrioventric-595
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ular Block, Complete), 426.4 (Right Bundle Branch Block), and 426.7 (Anoma-

lous Atrioventricular Excitation). Other diseases are either too general, as in

427.89 (Other Specified Cardiac Dysrhythmias), which makes it medically undis-

cernible, or does not have a specific medication treatment regime such as 437.0

(Cerebral Atherosclerosis). The treatment of cerebral atherosclerosis often in-600

volves administering statin, used for lowering cholesterol levels in the blood.

However, statin is also used for various other atherosclerosis diseases such as

aortic atherosclerosis and atherosclerosis of renal artery. Since no other discern-

able medication is used to treat cerebral atherosclerosis, this disease cannot be

differentiated by medication.605

Nonetheless, in some cases, diseases will have specific regimes of medication

treatment, such as atrial fibrillation and hypertension. Patients with hyperten-

sion will often be treated by beta-blockers, ACE inhibitors or angiotensin II

inhibitors. If two of these have been prescribed to a patient, there is a high

probability of suffering from hypertension.610

Another issue that is difficult to capture is that doses information of some

drugs may vary depending on the disease indication. For example, rivaroxaban

2.5mg BID is licensed for high-risk patients with acute coronary syndrome, while

rivaroxaban 20mg OD is for stroke prevention in atrial fibrillation. In this paper,

we focused our analysis on static patient information, which means that we do615

not model changes in drugs over time. For example, the medication warfarin will

often be prescribed to patients with venous thromboembolism and patients with

atrial flutter. Whereas patients with atrial flutter will be prescribed warfarin

for their entire life, venous thromboembolism patients will often stop taking

warfarin after a certain period. Designing a model that can capture temporal620

drug information is an interesting aspect that we plan to address in our future

work. Also, some patients may swap their drug into another agent from the

same class of drugs, causing a further dilution of the number of cases a model

can learn from. Some drugs are also in combination therapies, for example,

combining ACE inhibitors and a diuretic in a single combo pill for the treatment625

of hypertension.
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7.2. Generalizability

We evaluated the generalizability of the proposed method by experiment-

ing with the Danish DNPR dataset. We compared results obtained from hml

and ml models created over sets of ICD-9 codes from the MIMIC-III dataset630

to results obtained over the same sets of ICD-9 codes from the DNPR dataset.

Experiments are summarized in Table 1. Despite their different aspects of het-

erogeneity, experimental results indicate comparable predictive model power for

both datasets as illustrated in Figure 6. This finding demonstrates the proposed

method’s dataset-agnostic properties. Furthermore, as the Danish and Ameri-635

can datasets use distinct prescription and diagnosis vocabularies with different

naming conventions for medications and diseases, we created mappings to con-

vert between the vocabularies as described in Sections 3.4.2 and 3.4.1. Even

though the mappings are incomplete and include many-to-many relations, re-

sults indicate that such conversion does not hurt the predictable properties of640

the proposed model when used on the Danish dataset. This result demonstrates

the proposed method’s language-agnostic properties.

7.3. Transferability

As indicated by the results gained from investigating the model’s trans-

ferability, patient data’s heterogeneous nature negatively affects the proposed645

methods predictive power. We evaluated the transferability of the proposed

method by training models on subsets of ICD-9 disease codes of the MIMIC-III

dataset while evaluating the models on the same sets of ICD-9 codes for the

DNPR dataset as listed in Table 2. Results are summarized in Table 5. We

achieve the F1 score of 6.28% from training an hml model on 320 ICD-9 level650

4 codes while testing on the same subset of ATC-converted ICD-9 codes from

the DNPR dataset. Furthermore, for 229 out of 320 disease codes, the model

could not provide any accurate predictions (F1=0). The results suggest that

the heterogeneity between patient data across countries is too considerable to

create a model with good transferability. As investigated in Section 3.4, the655

variability in purpose, collection method, and utilization of diverse vocabulary
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standards for prescription and disease code hierarchies arguably add to the vari-

ance between MIMIC and DNPR. Notwithstanding, when limiting to subsets

of ICD-9 codes, model transferability significantly improves. An hml model

trained on the top 10 occurring ICD-9 codes from the s
′

code subset achieves660

an F1 score of 28.25 when tested on the same 10 ATC converted codes from the

DNPR dataset. Noticeably, 4 out of 10 ICD-9 codes achieve an F1 score below

5.00, which indicates that the proposed method could potentially have a high

transferability on specific sets of disease codes.

7.4. Domain Knowledge665

As with the majority of AI models today, domain knowledge is required to

train models with satisfactory performance in real world applications. Although

the proposed method incorporates external knowledge such as the ICD-9 disease

code hierarchy and the RxNorm medication vocabulary, the proposed method

is in fact agnostic towards these. Given a medical dataset coded using arbi-670

trary disease and medication vocabularies, one could train a model using the

proposed method either with or without a hierarchical taxonomy over the vo-

cabularies. While our model performs adequately without any added domain

knowledge, we show that incorporating domain knowledge in the form of hi-

erarchical taxonomies directly into the loss function for multi-label diagnosis675

prediction consistently improves model results.

7.5. Practical Implications

Automatic diagnosis code assignment using medication history has multiple

practical implications such as registry error correction, a supportive validation

tool for manual code assignment, or indicative tools usable in cases where pre-680

scription information is present but diagnosis information is not. Disease regis-

ters with manually assigned disease codes have been shown to be error-prone [2].

Using a neural model to find general patterns of medication to disease indica-

tions could automatically find outliers in register data. Currently we achieve an

F1 score of 36.98% on a model for the prediction of 567 codes as summarized685
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in Table 3. Furthermore, 311 of these codes are not discernible by medication.

Hence, a neural model using only patients’ prescription history can not find

registry errors for all disease codes. However, as our experiments show, medica-

tion history can for some diagnosis codes be used for highly accurate diagnosis

prediction and thereby be used in a system for finding register errors.690

Manual diagnosis assignment is a cumbersome and error-prone task. Using

a supportive tool to validate medical inputs of clinicians could help catch errors

before they enter the system. As summarized in Table 3 the model performs

better on higher levels of prediction. Although the model might not catch

wrongly assigned diagnosis codes at the most specific level (level 4), it could695

help catch cases on higher aggregation levels where the error’s severity is large.

In countries such as Germany, disease and medication registers are not com-

bined. This means that emergency health care providers in ambulant settings

sometimes only know the patient’s prescription history and not the disease his-

tory. This can have severe implications for the treatment of the patients, such700

as in the case of a patient having diabetes where several treatment protocols

drastically change. In this case, a medication based diagnosis prescription model

could help identify serious diseases present in the patient to guide emergency

health care providers in providing the correct treatment protocol in ambulant

settings.705

8. Conclusion and Future Work

We presented a proof-of-concept study of the feasibility of using a machine

learning model to assign multiple diagnosis codes on multiple aggregation levels

using a person’s current medication. The proposed method correctly assigned

diagnosis codes on multiple levels of the ICD-9 hierarchy over the MIMIC-III710

dataset. The detailed results allow identifying which codes and code- groups

are predictable by medication data. The use of a hierarchical loss function

improved the proposed method’s performance by an average F1 of 3-8% on

multiple levels of aggregation of the MIMIC-III dataset while also increasing
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generalizability results by up to 7.5% in terms of F1 score. The promising715

results support continued research into utilising larger medication datasets to

create quality control mechanisms for diagnosis code assignment and provide

diagnostic information to caregivers in emergencies.

Future work will further explore applications to clinical care using medica-

tion based diagnosis. Generalizability experiments demonstrate the feasibility720

and efficiency of the technique when applied to new dataset. Generalizability

results from experimentation on the Danish DNPR dataset indicate that the

technique is language-agnostic and can be directly used over new datasets. The

technique is also helpful in situations where prescription data is present, but

clinical discharge notes are not, as is the case with DNPR. Although model725

transferability underperformed when tested on the Danish DNPR dataset, re-

sults indicate that specific subsets of codes could be trained to perform well,

even in model transferability. Furthermore, integrating more and diverse pa-

tient information into a unified model for diagnosis prediction should be further

investigated. Patient clinical notes, medical imaging, coding systems such as730

laboratory codes, symptom codes and others are but a few examples of the di-

verse information contained in patient EHR that combined could increase the

predictive performance of medical AI systems.
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Appendix A. Appendix - Omitted codes and detailed results

Table A.8 details the ommitted codes from the diagnosis table and the rea-

sons for omission. We omit all codes with a low number of cases. We further omit

61 codes used to describe symptoms, as these are shared by multiple causes and740

will, most-probably, supplant a diagnosis code following medical investigation.

Injuries and foreign bodies (30 codes) are omitted as well as their treatment is

usually orthopedic or surgical, rather than medicinal. We omit the codes used

in ICD-9 to classify birth-age and pre-term phase for infants (14 codes) as these

are more descriptive than diagnostic. Finally, we omit the E and V series of745

codes that are used to provide additional details for statistical reasons and which

do not cause differences in medicinal treatment. We remain with 567 codes and

54, 419 cases (92.4%) that contain at least one of the remaining codes. Filtering

out only admissions contained in both the diagnosis and prescription tables we

remain with 48, 516 admissions.

Table A.8: List of Omitted ICD-9 Codes and Code Groups

Code(s) Description Reason

5994 differ-

ent codes

A large collection of various

codes

Low base rate (less than 100

cases)

765.X Descriptive of gestation week or

preterm weight

Will be accompanied by the spe-

cific results of pre-term birth if

such exist

8XX and

9XX

Injury Treatment would be Surgical or

Orthopedic and impossible to ac-

curately specify from medication

93.31,93.41 Foreign body Undiscernable medicinally

99.X Complications of medical care Undiscernable medicinally

61 different

codes

Collection of different symptoms

such as pain, nausea, and nu-

ances of mental state/ faculties

Should be accompanied by the

symptom’s cause which is the

main diagnosis
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