136 research outputs found
Functional characterization of molecular candidates for the calcium-activated chloride channels in the cilia of olfactory sensory neurons
Olfactory sensory neurons (OSNs) use a Ca2+-activated Cl\u2c9 channels amplification mechanism in olfactory transduction. Odor binding to odorant receptors in the cilia of OSNs leads to an increase of intraciliary Ca2+ concentration by Ca2+ entry through cyclic nucleotide-gated channels. Ca2+ activates a Cl\u2c9 channel that leads to an efflux of Cl\u2c9 from the cilia, contributing to the depolarization in OSNs. The molecular identity of the olfactory Ca2+-activated Cl\u2c9 channel is not definitely established. Bestrophin2 and TMEM16b/anoctamin2 are located at the surface of the olfactory epithelium, in the cilia of OSNs where olfactory transduction takes place.
Moreover when expressed in heterologous systems each of these proteins produces Ca2+-activated Cl\u2c9 currents. Both proteins have been indicated as a candidate for being a molecular component of the olfactory Ca2+-activated Cl\u2c9 channel. In the first part of this Thesis we analyzed knockout (KO) mice for bestrophin2. We compared the electrophysiological properties of Ca2+-activated Cl\u2c9 currents in OSNs from WT and KO mice for bestrophin2. Our data show that Ca2+-activated Cl\u2c9 currents are still present in the cilia of OSNs from KO mice for bestrophin2 and that their properties are not significantly different from those of WT mice. These results indicate that bestrophin2 does not appear to be the main molecular component of the olfactory Ca2+-activated Cl\u2c9 channel. Therefore further studies are required to determine the physiological function of the bestrophin2 in the cilia of OSNs.
In the second part of this Thesis we measured functional properties of the native Ca2+- activated Cl\u2c9 current in mouse OSNs and compared them with those of TMEM16b/anoctamin2-induced current in transfected HEK cells. We found a similar extracellular blocking potency for some Cl\u2c9 channels blockers, a similar anion permeability sequence and a reversal potential time-dependency. Therefore, we conclude that the measured electrophysiological properties are largely similar and further indicate that TMEM16b/anoctamin2 is likely to be a major subunit of the
native olfactory Ca2+-activated Cl\u2c9 current
PRESENCE OF NEGLECTED BACTERIA IN THE INFANT GUT MICROBIOTA
Il tratto gastro intestinale infantile al momento del parto è considerato virtualmente sterile e viene rapidamente colonizzato da microrganismi di origine materna e/o ambientale nei primi giorni di vita. Studi accoppiati di microbiologia classica e molecolare hanno dimostrato come la cavità amniotica sia popolata da microrganismi alcuni dei quali appartenenti a taxa non ancora coltivati e caratterizzati. Lo scopo del presente lavoro di tesi è stato quello di valutare la composizione del microbiota infantile durante i primi due anni di vita, in particolare, di popolazioni parzialmente “trascurate”. La tesi è suddivisibile in tre tematiche principali: presenza di popolazioni idrogenotrofiche, la distribuzione della famiglia delle Lachnospiraceae in soggetti sani prima del secondo anno di vita, e la possibile correlazione tra gli archaea metanogeni e la dieta in modello animale. Le tecniche impiegate nel presente lavoro di tesi sono state la PCR-DGGE e la PCR quantitativa (qPCR) e il sequenziamento Illumina. Le principali conclusioni derivabili dai tre studi sono correlate alla necessità di sviluppare nuove coppie di primers che meglio possano descrivere la complessa ecologia delle comunità microbiche intestinali. L’ambizioso obiettivo potrà considerarsi raggiunto quando si potranno identificare e stimare in modo preciso e corretto anche le popolazioni batteriche poco abbondanti nel microbiota intestinale infantile.At birth, the gastrointestinal tract is virtually sterile, but is rapidly colonized during the first days of life until a relatively stable state is reached. Several studies using both bacterial culture techniques and bio-molecular methods revealed that the amniotic cavity harbors microorganisms and, among them, uncultivated and uncharacterized taxa. The aim of the present PhD thesis was to evaluate the composition of some neglected populations inhabiting the infant gut microbiota until the second year of life. The PhD thesis is composed of three main chapters related to the presence of hydrogenotrophic populations, the occurrence of the Lachnospiraceae family in healthy subjects before the second year and the possible linkage between methanogens and diet in a piglet’s model. PCR-DGGE, the quantitative PCR (qPCR) and the Illumina deep sequencing have been the prevalent molecular techniques used in this work. Main conclusions obtained from these studies were mainly linked to the need of new primer sets that better describe the ecological complexity of the gut microbial community. This ambitious objective will be reached when it is possible to properly identify and quantify less represented bacterial populations within the infant gut ecosystem
Selection and Characterization Criteria of Probiotics Intended for Human Use from the Past to the Future
The probiotic product consumption has recently increased with the prevalent intent to promote human and animal wellbeing. The complex selection process dealing with new-isolated probiotic candidates is the first challenge that has to be faced. From the isolation to the launch on the market, information about safety, tolerance to host physiological conditions, adhesion properties, genetics and interaction with the host has to be collected. Probiotics must be safe, survive to the exposition to bile salts and to gut transit, adhere to intestinal cells lining and colonize the lumen of the tract. The evaluation process of the possible probiotic health benefits is widely supported by in-vitro assays simulating the in-vivo conditions. The aim of this work is to summarize the classical models usually employed for the probiotic screening by underlying strengths and weaknesses of all models and to present some more recent analysis tools used in the probiotic field. The long term goal in new probiotic candidate selection experiencing these combined essays together would lead to the hypothetical assignment acknowledged as one strain-one function
Endocannabinoid-Like Lipid Neuromodulators in the Regulation of Dopamine Signaling: Relevance for Drug Addiction
The family of lipid neuromodulators has been rapidly growing, as the use of different
-omics techniques led to the discovery of a large number of naturally occurring
N-acylethanolamines (NAEs) and N-acyl amino acids belonging to the complex lipid
signaling system termed endocannabinoidome. These molecules exert a variety of
biological activities in the central nervous system, as they modulate physiological
processes in neurons and glial cells and are involved in the pathophysiology of
neurological and psychiatric disorders. Their effects on dopamine cells have attracted
attention, as dysfunctions of dopamine systems characterize a range of psychiatric
disorders, i.e., schizophrenia and substance use disorders (SUD). While canonical
endocannabinoids are known to regulate excitatory and inhibitory synaptic inputs
impinging on dopamine cells and modulate several dopamine-mediated behaviors,
such as reward and addiction, the effects of other lipid neuromodulators are far less
clear. Here, we review the emerging role of endocannabinoid-like neuromodulators
in dopamine signaling, with a focus on non-cannabinoid N-acylethanolamines and
their receptors. Mounting evidence suggests that these neuromodulators contribute to
modulate synaptic transmission in dopamine regions and might represent a target for
novel medications in alcohol and nicotine use disorder
Targeting RAGE prevents muscle wasting and prolongs survival in cancer cachexia
Background: Cachexia, a multifactorial syndrome affecting more than 50% of patients with advanced cancer and responsible for ~20% of cancer-associated deaths, is still a poorly understood process without a standard cure available. Skeletal muscle atrophy caused by systemic inflammation is a major clinical feature of cachexia, leading to weight loss, dampening patients' quality of life, and reducing patients' response to anticancer therapy. RAGE (receptor for advanced glycation end-products) is a multiligand receptor of the immunoglobulin superfamily and a mediator of muscle regeneration, inflammation, and cancer. Methods: By using murine models consisting in the injection of colon 26 murine adenocarcinoma (C26-ADK) or Lewis lung carcinoma (LLC) cells in BALB/c and C57BL/6 or Ager−/− (RAGE-null) mice, respectively, we investigated the involvement of RAGE signalling in the main features of cancer cachexia, including the inflammatory state. In vitro experiments were performed using myotubes derived from C2C12 myoblasts or primary myoblasts isolated from C57BL/6 wild type and Ager−/− mice treated with the RAGE ligand, S100B (S100 calcium-binding protein B), TNF (tumor necrosis factor)α±IFN (interferon) γ, and tumour cell- or masses-conditioned media to analyse hallmarks of muscle atrophy. Finally, muscles of wild type and Ager−/− mice were injected with TNFα/IFNγ or S100B in a tumour-free environment. Results: We demonstrate that RAGE is determinant to activate signalling pathways leading to muscle protein degradation in the presence of proinflammatory cytokines and/or tumour-derived cachexia-inducing factors. We identify the RAGE ligand, S100B, as a novel factor able to induce muscle atrophy per se via a p38 MAPK (p38 mitogen-activated protein kinase)/myogenin axis and STAT3 (signal transducer and activator of transcription 3)-dependent MyoD (myoblast determination protein 1) degradation. Lastly, we found that in cancer conditions, an increase in serum levels of tumour-derived S100B and HMGB1 (high mobility group box 1) occurs leading to chronic activation/overexpression of RAGE, which induces hallmarks of cancer cachexia (i.e. muscle wasting, systemic inflammation, and release of tumour-derived pro-cachectic factors). Absence of RAGE in mice translates into reduced serum levels of cachexia-inducing factors, delayed loss of muscle mass and strength, reduced tumour progression, and increased survival. Conclusions: RAGE is a molecular determinant in inducing the hallmarks of cancer cachexia, and molecular targeting of RAGE might represent a therapeutic strategy to prevent or counteract the cachectic syndrome
Combined α2- and D2-receptor blockade activates noradrenergic and dopaminergic neurons, but extracellular dopamine in the prefrontal cortex is determined by uptake and release from noradrenergic terminals
Experimental and clinical evidence indicates a deficit of release and function of dopamine in schizophrenia and suggests that a(2)-adrenoceptor antagonists rescue dopamine deficit and improve the antipsychotic efficacy of D-2-receptor antagonists. In anesthetized male rats, we investigated how the blockade of a(2)- and D-2-receptors by atipamezole and raclopride, respectively, modified the firing of noradrenergic neurons in the locus coeruleus (LC) and dopaminergic neurons in the ventral tegmental area (VTA). In freely moving rats, we studied how atipamezole and raclopride modified extracellular noradrenaline, dopamine, and DOPAC levels in the medial prefrontal cortex (mPFC) through microdialysis. When administered alone, atipamezole activated LC noradrenaline but not VTA dopamine cell firing. Combined with raclopride, atipamezole activated dopamine cell firing above the level produced by raclopride. Atipamezole increased extracellular dopamine to the same level, whether administered alone or combined with raclopride. In the presence of the noradrenaline transporter (NET) inhibitor, atipamezole combined with raclopride increased extracellular dopamine beyond the level produced by either compound administered alone. The results suggest that a) the D-2-autoreceptor blockade is required for LC noradrenaline to activate VTA cell firing; b) the level of dopamine released from dopaminergic terminals is determined by NET; c) the elevation of extracellular dopamine levels in the mPFC is the resultant of dopamine uptake and release from noradrenergic terminals, independent of dopaminergic cell firing and release; and d) LC noradrenergic neurons are an important target for treatments to improve the prefrontal deficit of dopamine in neuropsychiatric pathologies
Genome Sequence Announcement of Lactobacillus vaginalis S-26419, Isolated from a Healthy Woman
The Lactobacillus vaginalis LMG S-26419 strain, also named CBA-L88 (BV2), was isolated at the AAT-Advanced Analytical Technologies laboratories from a vaginal swab obtained from a healthy woman. The total genome size is 1,806,242\u2009bp with a G+C content of 40.6%
Noradrenergic Source of Dopamine Assessed by Microdialysis in the Medial Prefrontal Cortex
Previous results indicate that dopamine (DA) release in the medial prefrontal cortex (mPFC) is modified by α2 adrenoceptor- but not D2 DA receptor- agonists and antagonists, suggesting that DA measured by microdialysis in the mPFC originates from noradrenergic terminals. Accordingly, noradrenergic denervation was found to prevent α2-receptor-mediated rise and fall of extracellular DA induced by atipamezole and clonidine, respectively, in the mPFC. The present study was aimed to determine whether DA released by dopaminergic terminals in the mPFC is not detected by in vivo microdialysis because is readily taken up by norepinephrine transporter (NET). Accordingly, the D2-antagonist raclopride increased the electrical activity of DA neurons in the ventral tegmental area (VTA) and enhanced extracellular DOPAC but failed to modify DA in the mPFC. However, in rats whose NET was either inactivated by nisoxetine or eliminated by noradrenergic denervation, raclopride still elevated extracellular DOPAC and activated dopaminergic activity, but also increased DA. Conversely, the D2-receptor agonist quinpirole reduced DOPAC but failed to modify DA in the mPFC in control rats. However, in rats whose NET was eliminated by noradrenergic denervation or inhibited by locally perfused nisoxetine, quinpirole maintained its ability to reduce DOPAC but acquired that of reducing DA. Moreover, raclopride and quinpirole, when locally perfused into the mPFC of rats subjected to noradrenergic denervation, were able to increase and decrease, respectively, extracellular DA levels, while being ineffective in control rats. Transient inactivation of noradrenergic neurons by clonidine infusion into the locus coeruleus, a condition where NET is preserved, was found to reduce extracellular NE and DA in the mPFC, whereas noradrenergic denervation, a condition where NET is eliminated, almost totally depleted extracellular NE but increased DA. Both transient inactivation and denervation of noradrenergic neurons were found to reduce the number of spontaneously active DA neurons and their bursting activity in the VTA. The results indicate that DA released in the mPFC by dopaminergic terminals is not detected by microdialysis unless DA clearance from extracellular space is inactivated. They support the hypothesis that noradrenergic terminals are the main source of DA measured by microdialysis in the mPFC during physiologically relevant activities
The Atypical Dopamine Transporter Inhibitor CE-158 Enhances Dopamine Neurotransmission in the Prefrontal Cortex of Male Rats: A Behavioral, Electrophysiological, and Microdialysis Study
Background: Dopamine plays a key role in several physiological functions such as motor control, learning and memory, and motivation and reward. The atypical dopamine transporter inhibitor S,S stereoisomer of 5-(((S)-((S)-(3-bromophenyl)(phenyl)methyl)sulfinyl)methyl)thiazole (CE-158) has been recently reported to promote behavioral flexibility and restore learning and memory in aged rats.Methods: Adult male rats were i.p. administered for 1 or 10 days with CE-158 at the dose of 1 or 10 mg/kg and tested for extracellular dopamine in the medial prefrontal cortex by means of intracerebral microdialysis and single unit cell recording in the same brain area. Moreover, the effects of acute and chronic CE-158 on exploratory behavior, locomotor activity, prepulse inhibition, working memory, and behavioral flexibility were also investigated.Results: CE-158 dose-dependently potentiated dopamine neurotransmission in the medial prefrontal cortex as assessed by intracerebral microdialysis. Moreover, repeated exposure to CE-158 at 1 mg/kg was sufficient to increase the number of active pyramidal neurons and their firing frequency in the same brain area. In addition, CE-158 at the dose of 10 mg/kg stimulates exploratory behavior to the same extent after acute or chronic treatment. Noteworthy, the chronic treatment at both doses did not induce any behavioral alterations suggestive of abuse potential (e.g., motor behavioral sensitization) or pro-psychotic-like effects such as disruption of sensorimotor gating or impairments in working memory and behavioral flexibility as measured by prepulse inhibition and Y maze.Conclusions: Altogether, these findings confirm CE-158 as a promising pro-cognitive agent and contribute to assessing its preclinical safety profile in a chronic administration regimen for further translational testing
Calcium-activated chloride currents in olfactory sensory neurons from mice lacking bestrophin-2
none8noOlfactory sensory neurons use a chloride-based signal amplification mechanism to detect odorants. The binding of odorants to receptors in the cilia of olfactory sensory neurons activates a transduction cascade that involves the opening of cyclic nucleotide-gated channels and the entry of Ca2+ into the cilia. Ca2+ activates a Cl- current that produces an efflux of Cl- ions and amplifies the depolarization. The molecular identity of Ca2+-activated Cl- channels is still elusive, although some bestrophins have been shown to function as Ca2+ -activated Cl- channels when expressed in heterologous systems. In the olfactory epithelium, bestrophin-2 (Best2) has been indicated as a candidate for being a molecular component of the olfactory Ca2+-activated Cl- channel. In this study, we have analysed mice lacking Best2. We compared the electrophysiological responses of the olfactory epithelium to odorant stimulation, as well as the properties of Ca2+-activated Cl- currents in wild-type (WT) and knockout (KO) mice for Best2. Our results confirm that Best2 is expressed in the cilia of olfactory sensory neurons, while odorant responses and Ca2+ -activated Cl- currents were not significantly different between WT and KO mice. Thus, Best2 does not appear to be the main molecular component of the olfactory channel. Further studies are required to determine the function of Best2 in the cilia of olfactory sensory neurons. © 2009 The Authors. Journal compilation © 2009 The Physiological Society.openPifferi S.; Dibattista M.; Sagheddu C.; Boccaccio A.; Al Qteishat A.; Ghirardi F.; Tirindelli R.; Menini A.Pifferi, S.; Dibattista, M.; Sagheddu, C.; Boccaccio, A.; Al Qteishat, A.; Ghirardi, F.; Tirindelli, R.; Menini, A
- …