282 research outputs found
Neural networks for gamma-hadron separation in MAGIC
Neural networks have proved to be versatile and robust for particle
separation in many experiments related to particle astrophysics. We apply these
techniques to separate gamma rays from hadrons for the MAGIC Cerenkov
Telescope. Two types of neural network architectures have been used for the
classi cation task: one is the MultiLayer Perceptron (MLP) based on supervised
learning, and the other is the Self-Organising Tree Algorithm (SOTA), which is
based on unsupervised learning. We propose a new architecture by combining
these two neural networks types to yield better and faster classi cation
results for our classi cation problem.Comment: 6 pages, 4 figures, to be published in the Proceedings of the 6th
  International Symposium ''Frontiers of Fundamental and Computational
  Physics'' (FFP6), Udine (Italy), Sep. 26-29, 200
A novel background reduction strategy for high level triggers and processing in gamma-ray Cherenkov detectors
Gamma ray astronomy is now at the leading edge for studies related both to
fundamental physics and astrophysics. The sensitivity of gamma detectors is
limited by the huge amount of background, constituted by hadronic cosmic rays
(typically two to three orders of magnitude more than the signal) and by the
accidental background in the detectors. By using the information on the
temporal evolution of the Cherenkov light, the background can be reduced. We
will present here the results obtained within the MAGIC experiment using a new
technique for the reduction of the background. Particle showers produced by
gamma rays show a different temporal distribution with respect to showers
produced by hadrons; the background due to accidental counts shows no
dependence on time. Such novel strategy can increase the sensitivity of present
instruments.Comment: 4 pages, 3 figures, Proc. of the 9th Int. Syposium "Frontiers of
  Fundamental and Computational Physics" (FFP9), (AIP, Melville, New York,
  2008, in press
The magnetar emission in the IR band: the role of magnetospheric currents
There is a general consensus about the fact that the magnetar scenario
provides a convincing explanation for several of the observed properties of the
Anomalous X-ray Pulsars and the Soft Gamma Repeaters. However, the origin of
the emission observed at low energies is still an open issue. We present a
quantitative model for the emission in the optical/infrared band produced by
curvature radiation from magnetospheric charges, and compare results with
current magnetars observations.Comment: 6 Pages, 2 Figures. Astrophysics and Space Science, in press.
  Proceedings of the ICREA Workshop on The High-Energy Emission from Pulsars
  and their Systems, Sant Cugat, April 12-16 201
MAGIC observations of very high energy gamma-rays from HESS J1813-178
Recently, the HESS collaboration has reported the detection of gamma-ray
emission above a few hundred GeV from eight new sources located close to the
Galactic Plane. The source HESS J1813-178 has sparked particular interest, as
subsequent radio observations imply an association with SNR G12.82-0.02.
Triggered by the detection in VHE gamma-rays, a positionally coincident source
has also been found in INTEGRAL and ASCA data. In this Letter we present MAGIC
observations of HESS J1813-178, resulting in the detection of a differential
gamma-ray flux consistent with a hard-slope power law, described as dN/(dA dt
dE) = (3.3+/-0.5)*10^{-12} (E/TeV)^{-2.1+/-0.2} cm^(-2)s^(-1)TeV^(-1). We
briefly discuss the observational technique used, the procedure implemented for
the data analysis, and put this detection in the perspective of multifrequency
observations.Comment: Accepted by ApJ Letter
Discovery of Very High Energy gamma-rays from 1ES 1011+496 at z=0.212
We report on the discovery of Very High Energy (VHE) gamma-ray emission from
the BL Lacertae object 1ES1011+496. The observation was triggered by an optical
outburst in March 2007 and the source was observed with the MAGIC telescope
from March to May 2007. Observing for 18.7 hr we find an excess of 6.2 sigma
with an integrated flux above 200 GeV of (1.58 photons
cm s. The VHE gamma-ray flux is >40% higher than in March-April
2006 (reported elsewhere), indicating that the VHE emission state may be
related to the optical emission state. We have also determined the redshift of
1ES1011+496 based on an optical spectrum that reveals the absorption lines of
the host galaxy. The redshift of z=0.212 makes 1ES1011+496 the most distant
source observed to emit VHE gamma-rays up to date.Comment: 4 pages, 6 figures, minor changes to fit the ApJ versio
Discovery of VHE Gamma Radiation from IC443 with the MAGIC Telescope
We report the detection of a new source of very high energy (VHE, E_gamma >=
100GeV) gamma-ray emission located close to the Galactic Plane, MAGIC
J0616+225, which is spatially coincident with SNR IC443. The observations were
carried out with the MAGIC telescope in the periods December 2005 - January
2006 and December 2006 - January 2007. Here we present results from this
source, leading to a VHE gamma-ray signal with a statistical significance of
5.7 sigma in the 2006/7 data and a measured differential gamma-ray flux
consistent with a power law, described as dN_gamma/(dA dt dE) = (1.0 +/-
0.2)*10^(-11)(E/0.4 TeV)^(-3.1 +/- 0.3) cm^(-2)s^(-1)TeV^(-1). We briefly
discuss the observational technique used and the procedure implemented for the
data analysis. The results are put in the perspective of the multiwavelength
emission and the molecular environment found in the region of IC443.Comment: Accepted by ApJ Letter
First bounds on the very high energy gamma-ray emission from Arp 220
Using the Major Atmospheric Gamma Imaging Cherenkov Telescope (MAGIC), we
have observed the nearest ultra-luminous infrared galaxy Arp 220 for about 15
hours. No significant signal was detected within the dedicated amount of
observation time. The first upper limits to the very high energy -ray
flux of Arp 220 are herein reported and compared with theoretical expectations.Comment: Accepted for publication in Ap
MAGIC upper limits on the very high energy emission from GRBs
The fast repositioning system of the MAGIC Telescope has allowed during its
first data cycle, between 2005 and the beginning of year 2006, observing nine
different GRBs as possible sources of very high energy gammas. These
observations were triggered by alerts from Swift, HETE-II, and Integral; they
started as fast as possible after the alerts and lasted for several minutes,
with an energy threshold varying between 80 and 200 GeV, depending upon the
zenith angle of the burst. No evidence for gamma signals was found, and upper
limits for the flux were derived for all events, using the standard analysis
chain of MAGIC. For the bursts with measured redshift, the upper limits are
compatible with a power law extrapolation, when the intrinsic fluxes are
evaluated taking into account the attenuation due to the scattering in the
Metagalactic Radiation Field (MRF).Comment: 25 pages, 9 figures, final version accepted by ApJ. Changet title to
  "MAGIC upped limits on the VERY high energy emission from GRBs", re-organized
  chapter with description of observation, removed non necessaries figures,
  added plot of effective area depending on zenith angle, added an appendix
  explaining the upper limit calculation, added some reference
Detection of bridge emission above 50 GeV from the Crab pulsar with the MAGIC telescopes
The Crab pulsar is the only astronomical pulsed source detected at very high
energy (VHE, E>100GeV) gamma-rays. The emission mechanism of VHE pulsation is
not yet fully understood, although several theoretical models have been
proposed. In order to test the new models, we measured the light curve and the
spectra of the Crab pulsar with high precision by means of deep observations.
We analyzed 135 hours of selected MAGIC data taken between 2009 and 2013 in
stereoscopic mode. In order to discuss the spectral shape in connection with
lower energies, 4.6 years of {\it Fermi}-LAT data were also analyzed. The known
two pulses per period were detected with a significance of  and
. In addition, significant emission was found between the two
pulses with . We discovered the bridge emission above 50 GeV
between the two main pulses. This emission can not be explained with the
existing theories. These data can be used for testing new theoretical models.Comment: 5 pages, 4 figure
Constraints on the steady and pulsed very high energy gamma-ray emission from observations of PSR B1951+32/CTB 80 with the MAGIC Telescope
We report on very high energy gamma-observations with the MAGIC Telescope of
the pulsar PSR B1951+32 and its associated nebula, CTB 80. Our data constrain
the cutoff energy of the pulsar to be less than 32 GeV, assuming the pulsed
gamma-ray emission to be exponentially cut off. The upper limit on the flux of
pulsed gamma-ray emission above 75 GeV is 4.3*10^-11 photons cm^-2 sec^-1, and
the upper limit on the flux of steady emission above 140 GeV is 1.5*10^-11
photons cm^-2 sec^-1. We discuss our results in the framework of recent model
predictions and other studies.Comment: 7 pages, 7 figures, replaced with published versio
- …
