Neural networks have proved to be versatile and robust for particle
separation in many experiments related to particle astrophysics. We apply these
techniques to separate gamma rays from hadrons for the MAGIC Cerenkov
Telescope. Two types of neural network architectures have been used for the
classi cation task: one is the MultiLayer Perceptron (MLP) based on supervised
learning, and the other is the Self-Organising Tree Algorithm (SOTA), which is
based on unsupervised learning. We propose a new architecture by combining
these two neural networks types to yield better and faster classi cation
results for our classi cation problem.Comment: 6 pages, 4 figures, to be published in the Proceedings of the 6th
International Symposium ''Frontiers of Fundamental and Computational
Physics'' (FFP6), Udine (Italy), Sep. 26-29, 200