52 research outputs found

    Sequence Determinants of the Folding Free-Energy Landscape of beta alpha-Repeat Proteins: A Dissertation

    Get PDF
    The most common structural platform in biology, the Ξ²Ξ±-repeat classes of proteins, are represented by the (Ξ²Ξ±)8TIM barrel topology and the Ξ±/Ξ²/Ξ± sandwich, CheY-like topology. Previous studies on the folding mechanisms of several members of these proteins have suggested that the initial event during refolding involves the formation of a kinetically trapped species that at least partially unfolds before the native conformation can be accessed. The simple topologies of these proteins are thought to permit access to locally folded regions that may coalesce in non-native ways to form stable interactions leading to misfolded intermediates. In a pair of TIM barrel proteins, Ξ±TS and sIGPS, it has been shown that the core of the off-pathway folding intermediates is comprised of locally connected clusters of isoleucine, leucine and valine (ILV) residues. These clusters of Branched Aliphatic Side Chains (BASiC) have the unique ability to very effectively prevent the penetration of water to the underlying hydrogen bond networks. This property retards hydrogen exchange with solvent, strengthening main chain hydrogen bonds and linking tertiary and secondary structure in a cooperative network of interactions. This property would also promote the rapid formation of collapsed species during refolding. From this viewpoint, the locally connected topology and the appropriate distribution of ILV residues in the sequence can modulate the energy landscapes of TIM barrel proteins. Another sequence determinant of protein stability that can significantly alter the structure and stability of TIM barrels is the long-range main chain-side chain hydrogen bond. Three of these interactions have been shown to form the molecular underpinnings for the cooperative access to the native state in Ξ±TS. Global analysis results presented in Chapter II and Chapter III, suggest that the off-pathway mechanism is common to three proteins of the CheY-like topology, namely CheY, NT-NtrC and Spo0F. These results are corroborated by Gō-simulations that are able to identify the minimal structure of kinetically trapped species during the refolding of CheY and Spo0F. The extent of transient, premature structure appears to correlate with the number of ILV side chains involved in a large sequence-local cluster that is formed between the central Ξ²-sheet and helices Ξ±2, Ξ±3 and Ξ±4. The failure of Gō-simulations to detect off-pathway species during the refolding of NT-NtrC may reflect the smaller number of ILV side chains in its corresponding hydrophobic cluster. In Chapter IV, comparison of the location of large ILV clusters with the hydrogen exchange protected regions in 19 proteins, suggest that clusters of BASiC residues are the primarily determinants of the stability cores of globular proteins. Although the location of the ILV clusters is sufficient to determine a majority of the protected amides in a protein structure, the extent of protection is over predicted by the ILV cluster method. The survey of 71 TIM barrel proteins presented in Chapter V, suggests that a specific type of long-range main chain-side chain hydrogen bond, termed β€œΞ²Ξ± hairpin clamp” is a common feature in the Ξ²Ξ±-repeat proteins. The location and sequence patterns observed demonstrate an evolutionary signature of the Ξ²Ξ±Ξ² modules that are the building blocks of several Ξ²Ξ±-repeat protein families. In summary, the work presented in this thesis recognizes the role of sequence in modulating the folding free energy landscapes of proteins. The formation of off-pathway folding intermediates in three CheY-like proteins and the differences in the proposed extent of structure formed in off-pathway intermediates of these three proteins, suggest that both topology and sequence play important and concerted roles in the folding of proteins. Locally connected ILV can clusters lead to off-pathway traps, whereas the formation of the productive folding path requires the development of long-range nativelike topological features to form the native state. The ability of ILV clusters to link secondary and tertiary structure formation enables them to be at the core of this cooperative folding process. Very good correlations between the locations of ILV clusters and both strong protection against exchange and the positions of folding nuclei for a variety of proteins reported in the literature support the generality of the BASiC hypothesis. Finally, the discovery of a novel pattern of H-bond interactions in the TIM barrel architecture, between the amide hydrogen of a core ILV residue with a polar side chain, bracketing Ξ²Ξ±Ξ² modules, suggests a means for establishing cooperativity between different types of side chain interactions towards formation of the native structure. See Additional Files for copies of the source code for the global analysis program and the cluster analysis program

    Floral resources of Karnataka: a geographic perspective

    Get PDF
    We compiled the data on the floral resources of Karnataka from diverse published sources and analysed the geographic patterns of distribution of floral diversity. Our database shows that Karnataka harbours 4758 species from 1408 genera and 178 families and accounts for about 27 per cent of the country's floral diversity. We computed the 'endemicity value' of different districts based on the number of endemic species (those restricted to a maximum of five districts) harboured by them and found that the most species-rich districts (viz. Uttara Kannada, Dakshina Kannada, Mysore, Hassan, Udupi and Kodagu) were also characterized by high values of endemicity while the species-poor districts had low values of endemicity. However, the relation between the species richness and endemicity of the districts was not linear; the species richness increases abruptly at lower levels of endemicity but plateaus off later at high levels of endemicity. Based on the number of species packed into the families, all the 27 districts segregated distinctly into three clusters that geographically correspond with the three major agro-climatic zones of the state. Our analysis showed that though the districts along the Western Ghats are florally rich, those along the dry tracts also harbour certain unique elements of the flora; thus these dry zone districts appear to be as important as those along the Western Ghats in conserving the floral resources

    Computer design of microfluidic mixers for protein/RNA folding studies

    Get PDF
    Kinetic studies of biological macromolecules increasingly use microfluidic mixers to initiate and monitor reaction progress. A motivation for using microfluidic mixers is to reduce sample consumption and decrease mixing time to microseconds. Some applications, such as small-angle x-ray scattering, also require large ( \u3e 10 micron) sampling areas to ensure high signal-to-noise ratios and to minimize parasitic scattering. Chaotic to marginally turbulent mixers are well suited for these applications because this class of mixers provides a good middle ground between existing laminar and turbulent mixers. In this study, we model various chaotic to marginally turbulent mixing concepts such as flow turning, flow splitting, and vortex generation using computational fluid dynamics for optimization of mixing efficiency and observation volume. Design iterations show flow turning to be the best candidate for chaotic/marginally turbulent mixing. A qualitative experimental test is performed on the finalized design with mixing of 10 M urea and water to validate the flow turning unsteady mixing concept as a viable option for RNA and protein folding studies. A comparison of direct numerical simulations (DNS) and turbulence models suggests that the applicability of turbulence models to these flow regimes may be limited

    Sub-millisecond time-resolved SAXS using a continuous-flow mixer and X-ray micro-beam

    Get PDF
    Small-angle X-ray scattering (SAXS) is a well established technique to probe the nanoscale structure and interactions in soft matter. It allows one to study the structure of native particles in near physiological environments and to analyze structural changes in response to variations in external conditions. The combination of microfluidics and SAXS provides a powerful tool to investigate dynamic processes on a molecular level with sub-millisecond time resolution. Reaction kinetics in the sub-millisecond time range has been achieved using continuous-flow mixers manufactured using micromachining techniques. The time resolution of these devices has previously been limited, in part, by the X-ray beam sizes delivered by typical SAXS beamlines. These limitations can be overcome using optics to focus X-rays to the micrometer size range providing that beam divergence and photon flux suitable for performing SAXS experiments can be maintained. Such micro-SAXS in combination with microfluidic devices would be an attractive probe for time-resolved studies. Here, the development of a high-duty-cycle scanning microsecond-timeresolution SAXS capability, built around the Kirkpatrick–Baez mirror-based microbeam system at the Biophysics Collaborative Access Team (BioCAT) beamline 18ID at the Advanced Photon Source, Argonne National Laboratory, is reported. A detailed description of the microbeam small-angle-scattering instrument, the turbulent flow mixer, as well as the data acquisition and control and analysis software is provided. Results are presented where this apparatus was used to study the folding of cytochrome c. Future prospects for this technique are discussed

    Atomistic structural ensemble refinement reveals non-native structure stabilizes a sub-millisecond folding intermediate of CheY

    Get PDF
    The dynamics of globular proteins can be described in terms of transitions between a folded native state and less-populated intermediates, or excited states, which can play critical roles in both protein folding and function. Excited states are by definition transient species, and therefore are difficult to characterize using current experimental techniques. Here, we report an atomistic model of the excited state ensemble of a stabilized mutant of an extensively studied flavodoxin fold protein CheY. We employed a hybrid simulation and experimental approach in which an aggregate 42 milliseconds of all-atom molecular dynamics were used as an informative prior for the structure of the excited state ensemble. This prior was then refined against small-angle X-ray scattering (SAXS) data employing an established method (EROS). The most striking feature of the resulting excited state ensemble was an unstructured N-terminus stabilized by non-native contacts in a conformation that is topologically simpler than the native state. Using these results, we then predict incisive single molecule FRET experiments as a means of model validation. This study demonstrates the paradigm of uniting simulation and experiment in a statistical model to study the structure of protein excited states and rationally design validating experiments

    Tonic Modulation of Spinal Hyperexcitability by the Endocannabinoid Receptor System in a Rat Model of Osteoarthritis Pain

    Get PDF
    Objective. To investigate the impact of an experimental model of osteoarthritis (OA) on spinal nociceptive processing and the role of the inhibitory endocannabinoid system in regulating sensory processing at the spinal level. Methods. Experimental OA was induced in rats by intraarticular injection of sodium mono-iodoacetate (MIA), and the development of pain behavior was assessed. Extracellular single-unit recordings of wide dynamic range (WDR) neurons in the dorsal horn were obtained in MIA-treated rats and saline-treated rats. The levels of endocannabinoids and the protein and messenger RNA levels of the main synthetic enzymes for the endocannabinoids (N-acyl phosphatidylethanolamine phospholipase D [NAPE-PLD] and diacylglycerol lipase [DAGL]) in the spinal cord were measured. Results. Low-weight (10 gm) mechanically evoked responses of WDR neurons were significantly (P < 0.05) facilitated 28 days after MIA injection compared with the responses in saline-treated rats, and spinal cord levels of anandamide and 2-arachidonoyl glycerol (2-AG) were increased in MIA-treated rats. Protein levels of NAPE-PLD and DAGL, which synthesize anandamide and 2-AG, respectively, were elevated in the spinal cords of MIA-treated rats. The functional role of endocannabinoids in the spinal cords of MIA-treated rats was increased via activation of cannabinoid 1 (CB1) and CB2 receptors, and blockade of the catabolism of anandamide had significantly greater inhibitory effects in MIA-treated rats compared with control rats. Conclusion. Our findings provide new evidence for altered spinal nociceptive processing indicative of central sensitization and for adaptive changes in the spinal cord endocannabinoid system in an experimental model of OA. The novel control of spinal cord neuronal responses by spinal cord CB2 receptors suggests that this receptor system may be an important target for the modulation of pain in OA

    Modulation of frustration in folding by sequence permutation

    Get PDF
    Folding of globular proteins can be envisioned as the contraction of a random coil unfolded state toward the native state on an energy surface rough with local minima trapping frustrated species. These substructures impede productive folding and can serve as nucleation sites for aggregation reactions. However, little is known about the relationship between frustration and its underlying sequence determinants. Chemotaxis response regulator Y (CheY), a 129-amino acid bacterial protein, has been shown previously to populate an off-pathway kinetic trap in the microsecond time range. The frustration has been ascribed to premature docking of the N- and C-terminal subdomains or, alternatively, to the formation of an unproductive local-in-sequence cluster of branched aliphatic side chains, isoleucine, leucine, and valine (ILV). The roles of the subdomains and ILV clusters in frustration were tested by altering the sequence connectivity using circular permutations. Surprisingly, the stability and buried surface area of the intermediate could be increased or decreased depending on the location of the termini. Comparison with the results of small-angle X-ray-scattering experiments and simulations points to the accelerated formation of a more compact, on-pathway species for the more stable intermediate. The effect of chain connectivity in modulating the structures and stabilities of the early kinetic traps in CheY is better understood in terms of the ILV cluster model. However, the subdomain model captures the requirement for an intact N-terminal domain to access the native conformation. Chain entropy and aliphatic-rich sequences play crucial roles in biasing the early events leading to frustration in the folding of CheY

    Ξ²Ξ±-Hairpin Clamps Brace Ξ²Ξ±Ξ² Modules and Can Make Substantive Contributions to the Stability of TIM Barrel Proteins

    Get PDF
    Non-local hydrogen bonding interactions between main chain amide hydrogen atoms and polar side chain acceptors that bracket consecutive Ξ²Ξ± or Ξ±Ξ² elements of secondary structure in Ξ±TS from E. coli, a TIM barrel protein, have previously been found to contribute 4–6 kcal molβˆ’1 to the stability of the native conformation. Experimental analysis of similar Ξ²Ξ±-hairpin clamps in a homologous pair of TIM barrel proteins of low sequence identity, IGPS from S. solfataricus and E. coli, reveals that this dramatic enhancement of stability is not unique to Ξ±TS. A survey of 71 TIM barrel proteins demonstrates a 4-fold symmetry for the placement of Ξ²Ξ±-hairpin clamps, bracing the fundamental Ξ²Ξ±Ξ² building block and defining its register in the (Ξ²Ξ±)8 motif. The preferred sequences and locations of Ξ²Ξ±-hairpin clamps will enhance structure prediction algorithms and provide a strategy for engineering stability in TIM barrel proteins

    A tightly packed hydrophobic cluster directs the formation of an off-pathway sub-millisecond folding intermediate in the alpha subunit of tryptophan synthase, a TIM barrel protein

    No full text
    Protein misfolding is now recognized as playing a crucial role in both normal and pathogenic folding reactions. An interesting example of misfolding at the earliest state of a natural folding reaction is provided by the alpha-subunit of tryptophan synthase, a (beta/alpha)(8) TIM barrel protein. The molecular basis for the formation of this off-pathway misfolded intermediate, I(BP), and a subsequent on-pathway intermediate, I1, was probed by mutational analysis of 20 branched aliphatic side-chains distributed throughout the sequence. The elimination of I(BP) and the substantial destabilization of I1 by replacement of a selective set of the isoleucine, leucine or valine residues (ILV) with alanine in a large ILV cluster external-to-the-barrel and spanning the N and C termini (cluster 2) implies tight-packing at most sites in both intermediates. Differential effects on I(BP) and I1 for replacements in alpha3, beta4 and alpha8 at the boundaries of cluster 2 suggest that their incorporation into I1 but not I(BP) reflects non-native folds at the edges of the crucial (beta/alpha)(1-2)beta(3) core in I(BP). The retention of I(BP) and the smaller and consistent destabilization of both I(BP) and I1 by similar replacements in an internal-to-the-barrel ILV cluster (cluster 1) and a second external-to-the-barrel ILV cluster (cluster 3) imply molten globule-like packing. The tight packing inferred, in part, for I(BP) or for all of I1 in cluster 2, but not in clusters 1 and 3, may reflect the larger size of cluster 2 and/or the enhanced number of isoleucine, leucine and valine self-contacts in and between contiguous elements of secondary structure. Tightly packed ILV-dominated hydrophobic clusters could serve as an important driving force for the earliest events in the folding and misfolding of the TIM barrel and other members of the (beta/alpha)(n) class of proteins
    • …
    corecore