2,773 research outputs found
The Variation of Integrated Star IMFs among Galaxies
The integrated galaxial initial mass function (IGIMF) is the relevant
distribution function containing the information on the distribution of stellar
remnants, the number of supernovae and the chemical enrichment history of a
galaxy. Since most stars form in embedded star clusters with different masses
the IGIMF becomes an integral of the assumed (universal or invariant) stellar
IMF over the embedded star-cluster mass function (ECMF). For a range of
reasonable assumptions about the IMF and the ECMF we find the IGIMF to be
steeper (containing fewer massive stars per star) than the stellar IMF, but
below a few Msol it is invariant and identical to the stellar IMF for all
galaxies. However, the steepening sensitively depends on the form of the ECMF
in the low-mass regime. Furthermore, observations indicate a relation between
the star formation rate of a galaxy and the most massive young stellar cluster
in it. The assumption that this cluster mass marks the upper end of a
young-cluster mass function leads to a connection of the star formation rate
and the slope of the IGIMF above a few Msol. The IGIMF varies with the star
formation history of a galaxy. Notably, large variations of the IGIMF are
evident for dE, dIrr and LSB galaxies with a small to modest stellar mass. We
find that for any galaxy the number of supernovae per star (NSNS) is suppressed
relative to that expected for a Salpeter IMF. Dwarf galaxies have a smaller
NSNS compared to massive galaxies. For dwarf galaxies the NSNS varies
substantially depending on the galaxy assembly history and the assumptions made
about the low-mass end of the ECMF. The findings presented here may be of some
consequence for the cosmological evolution of the number of supernovae per
low-mass star and the chemical enrichment of galaxies of different mass.Comment: 27 pages, accepted for publication by Ap
CCD photometric and mass function study of 9 young Large Magellanic Cloud star clusters
We present CCD photometric and mass function study of 9 young Large
Magellanic Cloud star clusters namely NGC 1767, NGC 1994, NGC 2002, NGC 2003,
NGC 2006, SL 538, NGC 2011, NGC 2098 and NGC 2136. The BVRI data reaching down
to V ~ 21 mag, are collected from 3.5-meter NTT/EFOSC2 in sub-arcsec seeing
conditions. For NGC 1767, NGC 1994, NGC 2002, NGC 2003, NGC 2011 and NGC 2136,
broad band photometric CCD data are presented for the first time. Seven of the
9 clusters have ages between 16 to 25 Myr while remaining two clusters have
ages Myr (NGC 2098) and Myr (NGC 2136). For 7 younger
clusters, the age estimates based on a recent model and the integrated spectra
are found to be systematically lower ( 10 Myr) from the present estimate.
In the mass range of , the MF slopes for 8 out of nine
clusters were found to be similar with the value of ranging from
to . For NGC 1767 it is flatter with . Mass segregation effects are observed for NGC 2002, NGC 2006,
NGC 2136 and NGC 2098. This is consistent with the findings of Kontizas et al.
for NGC 2098. Presence of mass segregation in these clusters could be an
imprint of star formation process as their ages are significantly smaller than
their dynamical evolution time. Mean MF slope of
derived for a sample of 25 young ( Myr) dynamically unevolved LMC
stellar systems provide support for the universality of IMF in the intermediate
mass range .Comment: To appear in MNRA
A Raman study of the Charge-Density-Wave State in AMoO (A = K,Rb)
We report a comparative Raman spectroscopic study of the
quasi-one-dimensional charge-density-wave systems \ab (A = K, Rb). The
temperature and polarization dependent experiments reveal charge-coupled
vibrational Raman features. The strongly temperature-dependent collective
amplitudon mode in both materials differ by about 3 cm, thus revealing the role
of alkali atom. We discus the observed vibrational features in terms of
charge-density-wave ground state accompanied by change in the crystal symmetry.
A frequency-kink in some modes seen in \bb between T = 80 K and 100 K supports
the first-order lock-in transition, unlike \rb. The unusually sharp Raman
lines(limited by the instrumental response) at very low temperatures and their
temperature evolution suggests that the decay of the low energy phonons is
strongly influenced by the presence of the temperature dependent charge density
wave gap.Comment: 13 pages, 7 figure
Paper on Design and Analysis of Wheel set assembly & Disassembly Hydraulic Press Machine
The wheels of the train are the part that carries the maximum static load, high axle load, high speeds, shocks and extreme weather conditions which expose them to and wear and tear which ultimately leads to failure. It is necessary for the railway department to maintain the wheels assembly for the safety and optimum working as defective wheel increases the risk of a train derailment. The wheels undergo periodic maintenance, and visual inspection is also carried out every day.To test the life and condition of the wheels special not destructive tests are carried out in every 18 months. This project is an industrial project for AI ENGINEERING ENTERPRISES. It involves the design and analysis of Hydraulic Press Machine which is used to assemble & dissemble the locomotive wheel set. In this part of paper we studied the different literatures for gaining the deep knowledge and also studying the work which was done related to our project
A Late-Time Flattening of Afterglow Light Curves
We present a sample of radio afterglow light curves with measured decay
slopes which show evidence for a flattening at late times compared to optical
and X-ray decay indices. The simplest origin for this behavior is that the
change in slope is due to a jet-like outflow making a transition to
sub-relativistic expansion. This can explain the late-time radio light curves
for many but not all of the bursts in the sample. We investigate several
possible modifications to the standard fireball model which can flatten
late-time light curves. Changes to the shock microphysics which govern particle
acceleration, or energy injection to the shock (either radially or azimuthally)
can reproduce the observed behavior. Distinguishing between these different
possibilities will require simultaneous optical/radio monitoring of afterglows
at late times.Comment: ApJ, submitte
Draft Genome Sequence for Desulfovibrio africanus Strain PCS.
Desulfovibrio africanus strain PCS is an anaerobic sulfate-reducing bacterium (SRB) isolated from sediment from Paleta Creek, San Diego, CA. Strain PCS is capable of reducing metals such as Fe(III) and Cr(VI), has a cell cycle, and is predicted to produce methylmercury. We present the D. africanus PCS genome sequence
Work probability distribution and tossing a biased coin
We show that the rare events present in dissipated work that enters Jarzynski
equality, when mapped appropriately to the phenomenon of large deviations found
in a biased coin toss, are enough to yield a quantitative work probability
distribution for Jarzynski equality. This allows us to propose a recipe for
constructing work probability distribution independent of the details of any
relevant system. The underlying framework, developed herein, is expected to be
of use in modelling other physical phenomena where rare events play an
important role.Comment: 6 pages, 4 figures
The nature of GRB-selected submillimeter galaxies: hot and young
We present detailed fits of the spectral energy distributions (SEDs) of four
submillimeter (submm) galaxies selected by the presence of a gamma-ray burst
(GRB) event (GRBs 980703, 000210, 000418 and 010222). These faint ~3 mJy submm
emitters at redshift ~1 are characterized by an unusual combination of long-
and short-wavelength properties, namely enhanced submm and/or radio emission
combined with optical faintness and blue colors. We exclude an active galactic
nucleus as the source of long-wavelength emission. From the SED fits we
conclude that the four galaxies are young (ages <2 Gyr), highly starforming
(star formation rates ~150 MSun/yr), low-mass (stellar masses ~10^10 MSun) and
dusty (dust masses ~3x10^8 MSun). Their high dust temperatures (Td>45 K)
indicate that GRB host galaxies are hotter, younger, and less massive
counterparts to submm-selected galaxies detected so far. Future facilities like
Herschel, JCMT/SCUBA-2 and ALMA will test this hypothesis enabling measurement
of dust temperatures of fainter GRB-selected galaxies.Comment: 9 pages, 2 figures, submitted to ApJ, for SED templates, see
http://archive.dark-cosmology.dk
Structure and mixing properties of pressure-atomized sprays
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76467/1/AIAA-1988-237-802.pd
GRB Energetics and the GRB Hubble Diagram: Promises and Limitations
We present a complete sample of 29 GRBs for which it has been possible to
determine temporal breaks (or limits) from their afterglow light curves. We
interpret these breaks within the framework of the uniform conical jet model,
incorporating realistic estimates of the ambient density and propagating error
estimates on the measured quantities. In agreement with our previous analysis
of a smaller sample, the derived jet opening angles of those 16 bursts with
redshifts result in a narrow clustering of geometrically-corrected gamma-ray
energies about E_gamma = 1.33e51 erg; the burst-to-burst variance about this
value is a factor of 2.2. Despite this rather small scatter, we demonstrate in
a series of GRB Hubble diagrams, that the current sample cannot place
meaningful constraints upon the fundamental parameters of the Universe. Indeed
for GRBs to ever be useful in cosmographic measurements we argue the necessity
of two directions. First, GRB Hubble diagrams should be based upon fundamental
physical quantities such as energy, rather than empirically-derived and
physically ill-understood distance indicators. Second, a more homogeneous set
should be constructed by culling sub-classes from the larger sample. These
sub-classes, though now first recognizable by deviant energies, ultimately must
be identifiable by properties other than those directly related to energy. We
identify a new sub-class of GRBs (``f-GRBs'') which appear both underluminous
by factors of at least 10 and exhibit a rapid fading at early times. About
10-20% of observed long-duration bursts appear to be f-GRBs.Comment: Accepted to the Astrophysical Journal (20 May 2003). 19 pages, 3
Postscript figure
- …