41 research outputs found
Young massive star clusters
Young massive clusters are dense aggregates of young stars that form the
fundamental building blocks of galaxies. Several examples exist in the Milky
Way Galaxy and the Local Group, but they are particularly abundant in starburst
and interacting galaxies. The few young massive clusters that are close enough
to resolve are of prime interest for studying the stellar mass function and the
ecological interplay between stellar evolution and stellar dynamics. The
distant unresolved clusters may be effectively used to study the star-cluster
mass function, and they provide excellent constraints on the formation
mechanisms of young cluster populations. Young massive clusters are expected to
be the nurseries for many unusual objects, including a wide range of exotic
stars and binaries. So far only a few such objects have been found in young
massive clusters, although their older cousins, the globular clusters, are
unusually rich in stellar exotica. In this review we focus on star clusters
younger than Myr, more than a few current crossing times old, and
more massive than \Msun, irrespective of cluster size or
environment. We describe the global properties of the currently known young
massive star clusters in the Local Group and beyond, and discuss the state of
the art in observations and dynamical modeling of these systems. In order to
make this review readable by observers, theorists, and computational
astrophysicists, we also review the cross-disciplinary terminology.Comment: Only 88 pages. To be published in ARAA. Final version to be submitted
on Friday 12 Februar
A perspective from extinct radionuclides on a Young Stellar Object: The Sun and its accretion disk
Meteorites, which are remnants of solar system formation, provide a direct
glimpse into the dynamics and evolution of a young stellar object (YSO), namely
our Sun. Much of our knowledge about the astrophysical context of the birth of
the Sun, the chronology of planetary growth from micrometer-sized dust to
terrestrial planets, and the activity of the young Sun comes from the study of
extinct radionuclides such as 26Al (t1/2 = 0.717 Myr). Here we review how the
signatures of extinct radionuclides (short-lived isotopes that were present
when the solar system formed and that have now decayed below detection level)
in planetary materials influence the current paradigm of solar system
formation. Particular attention is given to tying meteorite measurements to
remote astronomical observations of YSOs and modeling efforts. Some extinct
radionuclides were inherited from the long-term chemical evolution of the
Galaxy, others were injected into the solar system by a nearby supernova, and
some were produced by particle irradiation from the T-Tauri Sun. The chronology
inferred from extinct radionuclides reveals that dust agglomeration to form
centimeter-sized particles in the inner part of the disk was very rapid (<50
kyr), planetesimal formation started early and spanned several million years,
planetary embryos (possibly like Mars) were formed in a few million years, and
terrestrial planets (like Earth) completed their growths several tens of
million years after the birth of the Sun.Comment: 49 pages, 9 figures, 1 table. Uncorrected preprin
Rapid planetesimal formation in turbulent circumstellar discs
The initial stages of planet formation in circumstellar gas discs proceed via
dust grains that collide and build up larger and larger bodies (Safronov 1969).
How this process continues from metre-sized boulders to kilometre-scale
planetesimals is a major unsolved problem (Dominik et al. 2007): boulders stick
together poorly (Benz 2000), and spiral into the protostar in a few hundred
orbits due to a head wind from the slower rotating gas (Weidenschilling 1977).
Gravitational collapse of the solid component has been suggested to overcome
this barrier (Safronov 1969, Goldreich & Ward 1973, Youdin & Shu 2002). Even
low levels of turbulence, however, inhibit sedimentation of solids to a
sufficiently dense midplane layer (Weidenschilling & Cuzzi 1993, Dominik et al.
2007), but turbulence must be present to explain observed gas accretion in
protostellar discs (Hartmann 1998). Here we report the discovery of efficient
gravitational collapse of boulders in locally overdense regions in the
midplane. The boulders concentrate initially in transient high pressures in the
turbulent gas (Johansen, Klahr, & Henning 2006), and these concentrations are
augmented a further order of magnitude by a streaming instability (Youdin &
Goodman 2005, Johansen, Henning, & Klahr 2006, Johansen & Youdin 2007) driven
by the relative flow of gas and solids. We find that gravitationally bound
clusters form with masses comparable to dwarf planets and containing a
distribution of boulder sizes. Gravitational collapse happens much faster than
radial drift, offering a possible path to planetesimal formation in accreting
circumstellar discs.Comment: To appear in Nature (30 August 2007 issue). 18 pages (in referee
mode), 3 figures. Supplementary Information can be found at 0708.389
Secular Evolution of Galaxy Morphologies
Today we have numerous evidences that spirals evolve dynamically through
various secular or episodic processes, such as bar formation and destruction,
bulge growth and mergers, sometimes over much shorter periods than the standard
galaxy age of 10-15 Gyr. This, coupled to the known properties of the Hubble
sequence, leads to a unique sense of evolution: from Sm to Sa. Linking this to
the known mass components provides new indications on the nature of dark matter
in galaxies. The existence of large amounts of yet undetected dark gas appears
as the most natural option. Bounds on the amount of dark stars can be given
since their formation is mostly irreversible and requires obviously a same
amount of gas.Comment: 8 pages, Latex2e, crckapb.sty macros, 1 Postscript figure, replaced
with TeX source; To be published in the proceeedings of the "Dust-Morphology"
conference, Johannesburg, 22-26 January, 1996, D. Block (ed.), (Kluwer
Dordrecht
Forming Planetesimals in Solar and Extrasolar Nebulae
Planets are built from planetesimals: solids larger than a kilometer which
grow by colliding pairwise. Planetesimals themselves are unlikely to form by
two-body collisions; sub-km objects have gravitational fields individually too
weak, and electrostatic attraction is too feeble for growth beyond a few cm. We
review the possibility that planetesimals form when self-gravity brings
together vast ensembles of small particles. Even when self-gravity is weak,
aerodynamic processes can accumulate solids relative to gas, paving the way for
gravitational collapse. Particles pile up as they drift radially inward. Gas
turbulence stirs particles, but can also seed collapse by clumping them. While
the feedback of solids on gas triggers vertical shear instabilities that
obstruct self-gravity, this same feedback triggers streaming instabilities that
strongly concentrate particles. Numerical simulations find that solids 10-100
cm in size gravitationally collapse in turbulent disks. We outline areas for
progress, including the possibility that still smaller objects self-gravitate.Comment: To appear in Annual Reviews. This review is intended to be both
current and pedagogical. Incorporates suggestions from the community; further
comments welcome. v2: Single-space
Planetary population synthesis
In stellar astrophysics, the technique of population synthesis has been
successfully used for several decades. For planets, it is in contrast still a
young method which only became important in recent years because of the rapid
increase of the number of known extrasolar planets, and the associated growth
of statistical observational constraints. With planetary population synthesis,
the theory of planet formation and evolution can be put to the test against
these constraints. In this review of planetary population synthesis, we first
briefly list key observational constraints. Then, the work flow in the method
and its two main components are presented, namely global end-to-end models that
predict planetary system properties directly from protoplanetary disk
properties and probability distributions for these initial conditions. An
overview of various population synthesis models in the literature is given. The
sub-models for the physical processes considered in global models are
described: the evolution of the protoplanetary disk, the planets' accretion of
solids and gas, orbital migration, and N-body interactions among concurrently
growing protoplanets. Next, typical population synthesis results are
illustrated in the form of new syntheses obtained with the latest generation of
the Bern model. Planetary formation tracks, the distribution of planets in the
mass-distance and radius-distance plane, the planetary mass function, and the
distributions of planetary radii, semimajor axes, and luminosities are shown,
linked to underlying physical processes, and compared with their observational
counterparts. We finish by highlighting the most important predictions made by
population synthesis models and discuss the lessons learned from these
predictions - both those later observationally confirmed and those rejected.Comment: 47 pages, 12 figures. Invited review accepted for publication in the
'Handbook of Exoplanets', planet formation section, section editor: Ralph
Pudritz, Springer reference works, Juan Antonio Belmonte and Hans Deeg, Ed
Circumstellar disks and planets. Science cases for next-generation optical/infrared long-baseline interferometers
We present a review of the interplay between the evolution of circumstellar
disks and the formation of planets, both from the perspective of theoretical
models and dedicated observations. Based on this, we identify and discuss
fundamental questions concerning the formation and evolution of circumstellar
disks and planets which can be addressed in the near future with optical and
infrared long-baseline interferometers. Furthermore, the importance of
complementary observations with long-baseline (sub)millimeter interferometers
and high-sensitivity infrared observatories is outlined.Comment: 83 pages; Accepted for publication in "Astronomy and Astrophysics
Review"; The final publication is available at http://www.springerlink.co
Dynamical Evolution of Planetary Systems
Planetary systems can evolve dynamically even after the full growth of the
planets themselves. There is actually circumstantial evidence that most
planetary systems become unstable after the disappearance of gas from the
protoplanetary disk. These instabilities can be due to the original system
being too crowded and too closely packed or to external perturbations such as
tides, planetesimal scattering, or torques from distant stellar companions. The
Solar System was not exceptional in this sense. In its inner part, a crowded
system of planetary embryos became unstable, leading to a series of mutual
impacts that built the terrestrial planets on a timescale of ~100 My. In its
outer part, the giant planets became temporarily unstable and their orbital
configuration expanded under the effect of mutual encounters. A planet might
have been ejected in this phase. Thus, the orbital distributions of planetary
systems that we observe today, both solar and extrasolar ones, can be different
from the those emerging from the formation process and it is important to
consider possible long-term evolutionary effects to connect the two.Comment: Review to appear as a chapter in the "Handbook of Exoplanets", ed. H.
Deeg & J.A. Belmont