34 research outputs found

    HIV monoclonal antibodies: a new opportunity to further reduce mother-to-child HIV transmission.

    Get PDF
    Yegor Voronin and colleagues explore how monoclonal antibodies against HIV could provide a new opportunity to further reduce mother-to-child transmission of HIV and propose that new interventions should consider issues related to implementation, feasibility, and access. Please see later in the article for the Editors' Summary

    Dramatic Rise in Plasma Viremia after CD8+ T Cell Depletion in Simian Immunodeficiency Virus–infected Macaques

    Get PDF
    To determine the role of CD8+ T cells in controlling simian immunodeficiency virus (SIV) replication in vivo, we examined the effect of depleting this cell population using an anti-CD8 monoclonal antibody, OKT8F. There was on average a 99.9% reduction of CD8 cells in peripheral blood in six infected Macaca mulatta treated with OKT8F. The apparent CD8 depletion started 1 h after antibody administration, and low CD8 levels were maintained until day 8. An increase in plasma viremia of one to three orders of magnitude was observed in five of the six macaques. The injection of a control antibody to an infected macaque did not induce a sustained viral load increase, nor did it significantly reduce the number of CD8+ T cells. These results demonstrate that CD8 cells play a crucial role in suppressing SIV replication in vivo

    Robust and persistent reactivation of SIV and HIV by N-803 and depletion of CD8+ cells

    Get PDF
    Human immunodeficiency virus (HIV) persists indefinitely in individuals with HIV who receive antiretroviral therapy (ART) owing to a reservoir of latently infected cells that contain replication-competent virus1–4. Here, to better understand the mechanisms responsible for latency persistence and reversal, we used the interleukin-15 superagonist N-803 in conjunction with the depletion of CD8+ lymphocytes in ART-treated macaques infected with simian immunodeficiency virus (SIV). Although N-803 alone did not reactivate virus production, its administration after the depletion of CD8+ lymphocytes in conjunction with ART treatment induced robust and persistent reactivation of the virus in vivo. We found viraemia of more than 60 copies per ml in all macaques (n = 14; 100%) and in 41 out of a total of 56 samples (73.2%) that were collected each week after N-803 administration. Notably, concordant results were obtained in ART-treated HIV-infected humanized mice. In addition, we observed that co-culture with CD8+ T cells blocked the in vitro latency-reversing effect of N-803 on primary human CD4+ T cells that were latently infected with HIV. These results advance our understanding of the mechanisms responsible for latency reversal and lentivirus reactivation during ART-suppressed infection

    Combinatorial Immunotherapy of N-803 (IL-15 Superagonist) and Dinutuximab with Ex Vivo Expanded Natural Killer Cells Significantly Enhances in Vitro Cytotoxicity against GD2

    No full text
    BACKGROUND: Children with recurrent and/or metastatic osteosarcoma (OS), neuroblastoma (NB) and glioblastoma multiforme (GBM) have a dismal event-free survival ( METHODS: The anti-tumor combinatorial effects of N-803, dinutuximab and ex vivo expanded peripheral blood NK cells (exPBNK) were performed in vitro using cytoxicity assays against GD2 RESULTS: N-803 increased the viability and proliferation of exPBNK. The increased viability and proliferation are associated with increased phosphorylation of Stat3, Stat5, AKT, p38MAPK and the expression of NK activating receptors. The combination of dinutuximab and N-803 significantly enhanced in vitro cytotoxicity of exPBNK with enhanced perforin and IFN-γ release against OS, GBM and NB. The combination of exPBNK+N-803+dinutuximab significantly reduced the secretion of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), platelet-derived growth factor-BB (PDGF-BB), and stem cell growth factor beta (SCGF-β) from OS or GBM tumor cells. Furthermore, OS or GBM significantly inhibited the secretion of regulated on activation, normal T cell expressed and presumably secreted (RANTES) and stromal cell-derived factor-1 alpha (SDF-1α) from exPBNK cells (p CONCLUSIONS: Our results provide the rationale for the development of a clinical trial of N-803 in combination with dinutuximab and ex vivo exPBNK cells in patients with recurrent or metastatic GD2+ solid tumors

    Novel Cytokine-Antibody Fusion Protein, N-820, to Enhance the Functions of Ex Vivo Expanded Natural Killer Cells Against Burkitt Lymphoma

    No full text
    Background: The prognosis of patients with relapsed or progressive B cell (CD20+) non-Hodgkin\u27s lymphoma (B-NHL), including Burkitt lymphoma (BL), is dismal due to chemoradiotherapy resistance. Novel therapeutic strategies are urgently needed. N-820 is a fusion protein of N-803 (formerly known as ALT-803) to four single-chains of rituximab. This agent has tri-specific binding activity to CD20 and enhanced antibody-dependent cell-mediated cytotoxicity. Methods: We investigated the anti-tumor combinatorial effects of N-820 with ex vivo expanded peripheral blood natural killer (exPBNK) cells against rituximab-sensitive and rituximab-resistant CD20+ BL in vitro using cytoxicity assays and in vivo using human BL xenografted NOD/SCID/IL2rÎłnull (NSG) mice. We also investigated the cytokines/chemokines/growth factors released using ELISA and multiplex assay. Gene expression changes were examined using real-time PCR arrays. Results: N-820 significantly enhanced the expression of NK activating receptors (p\u3c0.001) and the proliferation of exPBNK cells with enhanced Ki67 expression and Stat5 phosphorylation (p\u3c0.001). N-820 significantly enhanced the secretion of cytokines, chemokines, and growth factors including GM-CSF, RANTES, MIP-1B (p\u3c0.001) from exPBNK cells as compared with the combination of rituximab+N-803. Importantly, N-820 significantly enhanced in vitro cytotoxicity (p\u3c0.001) of exPBNK with enhanced granzyme B and IFN-Îł release (p\u3c0.001) against BL. Gene expression profiles in exPBNK stimulated by N-820+Raji-2R showed enhanced transcription of CXCL9, CXCL1, CSF2, CSF3, GZMB, and IFNG. Moreover, N-820 combined with exPBNK significantly inhibited rituximab-resistant BL growth (p\u3c0.05) and extended the survival (p\u3c0.05) of BL xenografted NSG mice. Conclusions: Our results provide the rationale for the development of a clinical trial of N-820 alone or in combination with endogenous or ex vivo expanded NK cells in patients with CD20+ B-NHL failing prior rituximab containing chemoimmunotherapy regimens
    corecore