36 research outputs found

    GeneTide—Terra Incognita Discovery Endeavor: a new transcriptome focused member of the GeneCards/GeneNote suite of databases

    Get PDF
    GeneCards® is an automatically mined database of human genes that strives to create, along with its auxiliary databases—GeneLoc, GeneNote and GeneAnnot—the most inclusive resource of gene-centered information of the human genome. GeneTide, the Gene Terra Incognita Discovery Endeavor (http://genecards.weizmann.ac.il/genetide/), the newest addition to this family, is a transcriptome-focused database which aims to enhance GeneCards with additional expressed sequence tag (EST)-based genes. This is achieved by comprehensively mapping >85% of the ∼5.6 million human ESTs currently available at dbEST to known genes by means of data mining and integration of genomic resources including UniGene, DoTS, AceView and in-house resources. GeneTide thus creates comprehensive links between ESTs and GeneCards genes. Furthermore, groups of unassociated transcripts serve as a basis for defining novel EST-based GeneCards Candidates (EGCs). These EGCs, nearly 25 000 of which were defined in version 0.3 of GeneTide, are further annotated with various parameters, including splicing evidence and expression data extracted from the GeneNote database, to determine their validity as possible de novo genes

    Novel definition files for human GeneChips based on GeneAnnot

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Improvements in genome sequence annotation revealed discrepancies in the original probeset/gene assignment in Affymetrix microarray and the existence of differences between annotations and effective alignments of probes and transcription products. In the current generation of Affymetrix human GeneChips, most probesets include probes matching transcripts from more than one gene and probes which do not match any transcribed sequence.</p> <p>Results</p> <p>We developed a novel set of custom Chip Definition Files (CDF) and the corresponding Bioconductor libraries for Affymetrix human GeneChips, based on the information contained in the GeneAnnot database. GeneAnnot-based CDFs are composed of unique custom-probesets, including only probes matching a single gene.</p> <p>Conclusion</p> <p>GeneAnnot-based custom CDFs solve the problem of a reliable reconstruction of expression levels and eliminate the existence of more than one probeset per gene, which often leads to discordant expression signals for the same transcript when gene differential expression is the focus of the analysis. GeneAnnot CDFs are freely distributed and fully compliant with Affymetrix standards and all available software for gene expression analysis. The CDF libraries are available from <url>http://www.xlab.unimo.it/GA_CDF</url>, along with supplementary information (CDF libraries, installation guidelines and R code, CDF statistics, and analysis results).</p

    GIFtS: annotation landscape analysis with GeneCards

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gene annotation is a pivotal component in computational genomics, encompassing prediction of gene function, expression analysis, and sequence scrutiny. Hence, quantitative measures of the annotation landscape constitute a pertinent bioinformatics tool. GeneCards<sup>® </sup>is a gene-centric compendium of rich annotative information for over 50,000 human gene entries, building upon 68 data sources, including Gene Ontology (GO), pathways, interactions, phenotypes, publications and many more.</p> <p>Results</p> <p>We present the GeneCards Inferred Functionality Score (GIFtS) which allows a quantitative assessment of a gene's annotation status, by exploiting the unique wealth and diversity of GeneCards information. The GIFtS tool, linked from the GeneCards home page, facilitates browsing the human genome by searching for the annotation level of a specified gene, retrieving a list of genes within a specified range of GIFtS value, obtaining random genes with a specific GIFtS value, and experimenting with the GIFtS weighting algorithm for a variety of annotation categories. The bimodal shape of the GIFtS distribution suggests a division of the human gene repertoire into two main groups: the high-GIFtS peak consists almost entirely of protein-coding genes; the low-GIFtS peak consists of genes from all of the categories. Cluster analysis of GIFtS annotation vectors provides the classification of gene groups by detailed positioning in the annotation arena. GIFtS also provide measures which enable the evaluation of the databases that serve as GeneCards sources. An inverse correlation is found (for GIFtS>25) between the number of genes annotated by each source, and the average GIFtS value of genes associated with that source. Three typical source prototypes are revealed by their GIFtS distribution: genome-wide sources, sources comprising mainly highly annotated genes, and sources comprising mainly poorly annotated genes. The degree of accumulated knowledge for a given gene measured by GIFtS was correlated (for GIFtS>30) with the number of publications for a gene, and with the seniority of this entry in the HGNC database.</p> <p>Conclusion</p> <p>GIFtS can be a valuable tool for computational procedures which analyze lists of large set of genes resulting from wet-lab or computational research. GIFtS may also assist the scientific community with identification of groups of uncharacterized genes for diverse applications, such as delineation of novel functions and charting unexplored areas of the human genome.</p

    genome maps

    No full text
    Vol. 19 Suppl. 1 2003, pages i222–i22

    UTAP: User-friendly Transcriptome Analysis Pipeline

    No full text
    Abstract Background RNA-Seq technology is routinely used to characterize the transcriptome, and to detect gene expression differences among cell types, genotypes and conditions. Advances in short-read sequencing instruments such as Illumina Next-Seq have yielded easy-to-operate machines, with high throughput, at a lower price per base. However, processing this data requires bioinformatics expertise to tailor and execute specific solutions for each type of library preparation. Results In order to enable fast and user-friendly data analysis, we developed an intuitive and scalable transcriptome pipeline that executes the full process, starting from cDNA sequences derived by RNA-Seq [Nat Rev Genet 10:57-63, 2009] and bulk MARS-Seq [Science 343:776-779, 2014] and ending with sets of differentially expressed genes. Output files are placed in structured folders, and results summaries are provided in rich and comprehensive reports, containing dozens of plots, tables and links. Conclusion Our User-friendly Transcriptome Analysis Pipeline (UTAP) is an open source, web-based intuitive platform available to the biomedical research community, enabling researchers to efficiently and accurately analyse transcriptome sequence data
    corecore