8 research outputs found

    Circulating T-Cell Subsets, Monocytes, and Natural Killer Cells in Peripartum Cardiomyopathy: Results From the Multicenter IPAC Study

    No full text
    •Immune cell subsets were examined in healthy postpartum and peripartum cardiomyopathy (PPCM) women.•In the early postpartum, PPCM women had lower NK and higher CD3+CD4–CD8–CD38+ T cell levels.•Levels largely normalized by 6 months postpartum. The aim of this work was to evaluate the hypothesis that the distribution of circulating immune cell subsets, or their activation state, is significantly different between peripartum cardiomyopathy (PPCM) and healthy postpartum (HP) women. PPCM is a major cause of maternal morbidity and mortality, and an immune-mediated etiology has been hypothesized. Cellular immunity, altered in pregnancy and the peripartum period, has been proposed to play a role in PPCM pathogenesis. The Investigation of Pregnancy-Associated Cardiomyopathy (IPAC) study enrolled 100 women presenting with a left ventricular ejection fraction of <0.45 within 2 months of delivery. Peripheral T-cell subsets, natural killer (NK) cells, and cellular activation markers were assessed by flow cytometry in PPCM women early (<6 wk), 2 months, and 6 months postpartum and compared with those of HP women and women with non–pregnancy-associated recent-onset cardiomyopathy (ROCM). Entry NK cell levels (CD3–CD56+CD16+; reported as % of CD3– cells) were significantly (P < .0003) reduced in PPCM (6.6 ± 4.9% of CD3– cells) compared to HP (11.9 ± 5%). Of T-cell subtypes, CD3+CD4–CD8–CD38+ cells differed significantly (P < .004) between PPCM (24.5 ± 12.5% of CD3+CD4–CD8– cells) and HP (12.5 ± 6.4%). PPCM patients demonstrated a rapid recovery of NK and CD3+CD4–CD8–CD38+ cell levels. However, black women had a delayed recovery of NK cells. A similar reduction of NK cells was observed in women with ROCM. Compared with HP control women, early postpartum PPCM women show significantly reduced NK cells, and higher CD3+CD4–CD8–CD38+ cells, which both normalize over time postpartum. The mechanistic role of NK cells and “double negative” (CD4–CD8–) T regulatory cells in PPCM requires further investigation

    Risk of COVID-19 after natural infection or vaccinationResearch in context

    No full text
    Summary: Background: While vaccines have established utility against COVID-19, phase 3 efficacy studies have generally not comprehensively evaluated protection provided by previous infection or hybrid immunity (previous infection plus vaccination). Individual patient data from US government-supported harmonized vaccine trials provide an unprecedented sample population to address this issue. We characterized the protective efficacy of previous SARS-CoV-2 infection and hybrid immunity against COVID-19 early in the pandemic over three-to six-month follow-up and compared with vaccine-associated protection. Methods: In this post-hoc cross-protocol analysis of the Moderna, AstraZeneca, Janssen, and Novavax COVID-19 vaccine clinical trials, we allocated participants into four groups based on previous-infection status at enrolment and treatment: no previous infection/placebo; previous infection/placebo; no previous infection/vaccine; and previous infection/vaccine. The main outcome was RT-PCR-confirmed COVID-19 >7–15 days (per original protocols) after final study injection. We calculated crude and adjusted efficacy measures. Findings: Previous infection/placebo participants had a 92% decreased risk of future COVID-19 compared to no previous infection/placebo participants (overall hazard ratio [HR] ratio: 0.08; 95% CI: 0.05–0.13). Among single-dose Janssen participants, hybrid immunity conferred greater protection than vaccine alone (HR: 0.03; 95% CI: 0.01–0.10). Too few infections were observed to draw statistical inferences comparing hybrid immunity to vaccine alone for other trials. Vaccination, previous infection, and hybrid immunity all provided near-complete protection against severe disease. Interpretation: Previous infection, any hybrid immunity, and two-dose vaccination all provided substantial protection against symptomatic and severe COVID-19 through the early Delta period. Thus, as a surrogate for natural infection, vaccination remains the safest approach to protection. Funding: National Institutes of Health
    corecore