10 research outputs found

    COMPUTER ASSISTED LANGUAGE LEARNING (CALL): Konsep Pembelajaran Bahasa Inggris Berbantuan Komputer

    Get PDF
    The world has entered the era of globalization, where the role of language especially English and the role of technology especially Instructional Computer Technology (ICT) are very dominant. These two elements are evolving so intense and must be consumed in all areas of modern education. So required proper interaction system to unify the two components, which is the actualization of language and the computer sophistication. In this case the most suitable and comprehensive approach is Computer Assisted Language Learning (CALL) as a systemic interaction in teaching English proces

    Generalized self-concordant analysis of Frank--Wolfe algorithms

    Get PDF
    Projection-free optimization via different variants of the Frank-Wolfe (FW) method has become one of the cornerstones in large scale optimization for machine learning and computational statistics. Numerous applications within these fields involve the minimization of functions with self-concordance like properties. Such generalized self-concordant (GSC) functions do not necessarily feature a Lipschitz continuous gradient, nor are they strongly convex. Indeed, in a number of applications, e.g. inverse covariance estimation or distance-weighted discrimination problems in support vector machines, the loss is given by a GSC function having unbounded curvature, implying absence of theoretical guarantees for the existing FW methods. This paper closes this apparent gap in the literature by developing provably convergent FW algorithms with standard O(1/k) convergence rate guarantees. If the problem formulation allows the efficient construction of a local linear minimization oracle, we develop a FW method with linear convergence rate

    Generalized self-concordant analysis of Frank-Wolfe algorithms

    Get PDF
    Projection-free optimization via different variants of the Frank-Wolfe method has become one of the cornerstones of large scale optimization for machine learning and computational statistics. Numerous applications within these fields involve the minimization of functions with self-concordance like properties. Such generalized self-concordant functions do not necessarily feature a Lipschitz continuous gradient, nor are they strongly convex, making them a challenging class of functions for first-order methods. Indeed, in a number of applications, such as inverse covariance estimation or distance-weighted discrimination problems in binary classification, the loss is given by a generalized self-concordant function having potentially unbounded curvature. For such problems projection-free minimization methods have no theoretical convergence guarantee. This paper closes this apparent gap in the literature by developing provably convergent Frank-Wolfe algorithms with standard O(1/k) convergence rate guarantees. Based on these new insights, we show how these sublinearly convergent methods can be accelerated to yield linearly convergent projection-free methods, by either relying on the availability of a local liner minimization oracle, or a suitable modification of the away-step Frank-Wolfe method

    Self-concordant analysis of Frank-Wolfe algorithms

    No full text

    Self-concordant analysis of Frank--Wolfe algorithms

    Get PDF
    Projection-free optimization via different variants of the Frank-Wolfe (FW), a.k.a. Conditional Gradient method has become one of the cornerstones in optimization for machine learning since in many cases the linear minimization oracle is much cheaper to implement than projections and some sparsity needs to be preserved. In a number of applications, e.g. Poisson inverse problems or quantum state tomography, the loss is given by a self-concordant (SC) function having unbounded curvature, implying absence of theoretical guarantees for the existing FW methods. We use the theory of SC functions to provide a new adaptive step size for FW methods and prove global convergence rate O(1/k) after k iterations. If the problem admits a stronger local linear minimization oracle, we construct a novel FW method with linear convergence rate for SC functions

    Self-concordant analysis of Frank-Wolfe algorithms

    Full text link
    Projection-free optimization via different variants of the Frank-Wolfe (FW), a.k.a. Conditional Gradient method has become one of the cornerstones in optimization for machine learning since in many cases the linear minimization oracle is much cheaper to implement than projections and some sparsity needs to be preserved. In a number of applications, e.g. Poisson inverse problems or quantum state tomography, the loss is given by a self-concordant (SC) function having unbounded curvature, implying absence of theoretical guarantees for the existing FW methods. We use the theory of SC functions to provide a new adaptive step size for FW methods and prove global convergence rate O(1/k) after k iterations. If the problem admits a stronger local linear minimization oracle, we construct a novel FW method with linear convergence rate for SC functions.Comment: Proceedings of the 37th International Conference on Machine Learning (ICML2020

    Academic Plagiarism Detection

    No full text
    corecore