30 research outputs found

    Sexual Dysfunction in Iranian Men with Diabetes; a Systematic Review and Meta-analysis

    Get PDF
    Introduction: The typical sexual function involves the integrity and harmonious interaction of psychological, endocrine, vascular, and nervous systems. We aimed to determine the prevalence of sexual dysfunction (SD), more specifically erectile dysfunction in Iranian men with diabetes. Method: Using keywords including: “sexual function,” “erectile dysfunction,” “diabetes,” and “Iran”, an electronic search was done on national and international databases. All cross-sectional or baseline data in cohort studies were included. The prevalence of SD and its related risk factors were extracted and summarized. The random effect model was used for estimating the pooled prevalence.   Results: Ultimately, 16 studies were included in the qualitative synthesis, amongst which 6 were included for quantitative synthesis. The pooled prevalence of SD across included studies was 50.7%. with a total sample size of 1513. Two main correlated factors with SD were advanced age and depression. Conclusion: Our analysis showed that more than half of the Iranian men with diabetes suffer from SD. Apart from advanced age, the most important attributes for comorbidity of diabetes and SD in these patients were found to be chronic uncontrolled high blood sugar and depression.  More advanced epidemiological studies are needed to assess the temporality of the relationship between SD and its related comorbidities and to develop proper preventive programs

    MWCNTs-TiO2 incorporated-Mg composites to improve the mechanical, corrosion and biological characteristics for use in biomedical fields

    Get PDF
    This study attempts to synthesize MgZn/TiO2-MWCNTs composites with varying TiO2-MWCNT concentrations using mechanical alloying and a semi-powder metallurgy process coupled with spark plasma sintering. It also aims to investigate the mechanical, corrosion, and antibacterial properties of these composites. When compared to the MgZn composite, the microhardness and compressive strength of the MgZn/TiO2-MWCNTs composites were enhanced to 79 HV and 269 MPa, respectively. The results of cell culture and viability experiments revealed that incorporating TiO2-MWCNTs increased osteoblast proliferation and attachment and enhanced the biocompatibility of the TiO2-MWCNTs nanocomposite. It was observed that the corrosion resistance of the Mg-based composite was improved and the corrosion rate was reduced to about 2.1 mm/y with the addition of 10 wt% TiO2-1 wt% MWCNTs. In vitro testing for up to 14 days revealed a reduced degradation rate following the incorporation of TiO2-MWCNTs reinforcement into a MgZn matrix alloy. Antibacterial evaluations revealed that the composite had antibacterial activity, with an inhibition zone of 3.7 mm against Staphylococcus aureus. The MgZn/TiO2-MWCNTs composite structure has great potential for use in orthopedic fracture fixation devices

    Carbon nanotubes (CNTs)-reinforced magnesium-based matrix composites: A comprehensive review

    Get PDF
    In recent years considerable attention has been attracted to magnesium because of its light weight, high specific strength, and ease of recycling. Because of the growing demand for lightweight materials in aerospace, medical and automotive industries, magnesium-based metal matrix nanocomposites (MMNCs) reinforced with ceramic nanometer-sized particles, graphene nanoplatelets (GNPs) or carbon nanotubes (CNTs) were developed. CNTs have excellent material characteristics like low density, high tensile strength, high ratio of surface-to-volume, and high thermal conductivity that makes them attractive to use as reinforcements to fabricate high-performance, and high-strength metal-matrix composites (MMCs). Reinforcing magnesium (Mg) using small amounts of CNTs can improve the mechanical and physical properties in the fabricated lightweight and high-performance nanocomposite. Nevertheless, the incorporation of CNTs into a Mg-based matrix faces some challenges, and a uniform distribution is dependent on the parameters of the fabricating process. The characteristics of a CNTs reinforced composite are related to the uniform distribution, weight percent, and length of the CNTs, as well as the interfacial bonding and alignment between CNTs reinforcement and the Mg-based matrix. In this review article, the recent findings in the fabricating methods, characterization of the composite’s properties, and application of Mg-based composites reinforced with CNTs are studied. These include the strategies of fabricating CNT-reinforced Mg-based composites, mechanical responses, and corrosion behaviors. The present review aims to investigate and conclude the most relevant studies conducted in the field of Mg/CNTs composites. Strategies to conquer complicated challenges are suggested and potential fields of Mg/CNTs composites as upcoming structural material regarding functional requirements in aerospace, medical and automotive industries are particularly presented

    A comprehensive review on surface modifications of biodegradable magnesium-based implant alloy: polymer coatings opportunities and challenges

    Get PDF
    The development of biodegradable implants is certainly intriguing, and magnesium and its alloys are considered significant among the various biodegradable materials. Nevertheless, the fast degradation, the generation of a significant amount of hydrogen gas, and the escalation in the pH value of the body solution are significant barriers to their use as an implant material. The appropriate approach is able to solve this issue, resulting in a decrease the rate of Mg degradation, which can be accomplished by alloying, surface adjustment, and mechanical treatment. Surface modification is a practical option because it not only improves corrosion resistance but also prepares a treated surface to improve bone regeneration and cell attachment. Metal coatings, ceramic coatings, and permanent polymers were shown to minimize degradation rates, but inflammation and foreign body responses were also suggested. In contrast to permanent materials, the bioabsorbable polymers normally show the desired biocompatibility. In order to improve the performance of drugs, they are generally encapsulated in biodegradable polymers. This study summarized the most recent advancements in manufacturing polymeric coatings on Mg alloys. The related corrosion resistance enhancement strategies and future potentials are discussed. Ultimately, the major challenges and difficulties are presented with aim of the development of polymer-coated Mg-based implant materials

    Time and Frequency Evolution of the Precursors in Dispersive Media and their Applications

    No full text
    Until now, few rigorous studies of the precursors in structures exhibiting superluminal group velocities have been performed. One dimensional photonic crystals(1DPC) and active Lorentzian media are among the ones which are able to exhibit superluminal propagation. In the first part of the thesis we have studied the evolution of the precursors in active Lorentzian media and 1DPC. The problem of the propagation of the precursors in active Lorentzian media is addressed, by employing the steepest descent method to provide a detailed description of the propagation of the pulse inside the dispersive medium in the time domain. The problem of the time and frequency evolution of the precursors in 1DPC is studied, using the finite-difference time-domain (FDTD) techniques in conjunction with joint time-frequency analysis (JTFA). Our study clearly shows that the precursor fields associated with superluminal pulse propagation travel at subluminal speeds. It is also shown that FDTD analysis and JTFA can be combined to study the dynamic evolution of the transient and steady state pulse propagation in dispersive media. The second part of the thesis concentrates on the applications of the precursors. An interesting property of the precursors is their lower than exponential attenuation rate inside a lossy dielectric, such as water. This property of the precursors has made them an interesting candidate for applications such as ground penetrating radar and underwater communication. It was recently pointed out that a pulse which is generated inside of water and assumes the shape of the Brillouin precursor would be optimally suited for long range propagation in water (described by the single-pole Debye model). Here, we have considered the optimal pulse propagation problem, accounting for the interaction of the pulse with the air/water interface at oblique incidence. In addition, we argue that pulse excitations which are rough approximation of the Brillouin precursor will eventually evolve into the Brillouin precursor itself shortly after they enter water. Therefore, the excitation of a long-propagating pulse is not sensitive to its shape. Finally, we studied the performance of the optimized pulse in terms of the energy of the scattered field from an object inside water. Based on the simulation results the optimized pulse scattered field has higher energy compared to pulses with the same energy and different temporal distribution. The FDTD technique is employed in all the simulations.Ph

    Plato and Heideggerâs Views on Language: a Comparative Study

    No full text
    This paper intends to carry out a comparative study on Plato and Heidegger’s views on language. What allows such a comparison is that according to both Plato and Heidegger, the question of language is connected with the question of Being. In other words, they study the nature of language "in its relation to Being". Therefore, both Plato and Heidegger believe the true nature of language is "revealing and disclosing the Being or beings". However, their difference liesin their apparently similar attitudes towards the nature of language because the procedure of disclosure of Being in language, and the limits of this disclosure are different according to each of these two thinkers. This difference has finally its root in their fundamental views on man, Being, and their relationship

    Longitudinal Shunt Slot Excitation by Wiggly Ridge Substrate Integrated Waveguide

    No full text
    Application of a substrate integrated waveguide with wiggly ridge shape is presented for excitation longitudinal shunt slot antenna. Two main design equations for design substrate integrated waveguide structure and get parameters of structures, for longitudinal shunt slot excitation by shape wiggly ridge in substrate integrated waveguide are modified. Proposed method is used by applied the crinkle shape to ridge for ridge substrate integrated waveguide structure. This shape wiggly ridge just under longitudinal slot. The slot is place at centreline of substrate integrated waveguide (siw) in center of waveguide and on dielectric copper surface, top of substrate integrated waveguide. Amount of crinkle depth of waveguide centreline is proportional with needful radiation of slot and normalized conductance could be much to increase crinkle depth. In this paper the shunt element distribution assumption for prposed structure is spoted. Results of simulation show, proposed method is suitable candidate for replacing with usual longitudinal shunt slot. Structure’s useful is, low fabrication price, small profile and adaptation with microstrip circuit. Also slot place along waveguide centerline and wiggle depth substitute slot offset, therefore this procedure can suppress second order bim in array containing suggestion structure

    Performance Predictions For Compact Lithium Niobate Mach-Zehnder Electrooptic Modulators

    No full text
    A model for the frequency-dependent response of compact thin-film lithium-niobate electrooptic modulators is developed and verified by comparison with measurements. Device designs with significant improvement in the attainable modulation bandwidth are also presented
    corecore