86 research outputs found

    Glucagon-like peptide-1 (GLP-1) increases in plasma and colon tissue prior to estrus and circulating levels change with increasing age in reproductively competent Wistar rats

    No full text
    There is a well-documented association between cyclic changes to food intake and the changing ovarian hormone levels of the reproductive cycle in female mammals. Limited research on appetite-controlling gastrointestinal peptides has taken place in females, simply because regular reproductive changes in steroid hormones present additional experimental factors to account for. This study focussed directly on the roles that gastrointestinal-secreted peptides may have in these reported, naturally occurring, changes to food intake during the rodent estrous cycle and aimed to determine whether peripheral changes occurred in the anorexigenic (appetite-reducing) hormones peptide-YY (PYY) and glucagon-like peptide-1 (GLP-1) in female Wistar rats (32-44 weeks of age). Total forms of each peptide were measured in matched fed and fasted plasma and descending colon tissue samples for each animal during the dark (feeding) phase. PYY concentrations did not significantly change between defined cycle stages, in either plasma or tissue samples. GLP-1 concentrations in fed plasma and descending colon tissue were significantly increased during proestrus, just prior to a significant reduction in fasted stomach contents at estrus, suggesting increased satiety and reduced food intake at this stage of the cycle. Increased proestrus GLP-1 concentrations could contribute to the reported reduction in food intake during estrus and may also have biological importance in providing the optimal nutritional and metabolic environment for gametes at the potential point of conception. Additional analysis of the findings demonstrated significant interactions of ovarian cycle stage and fed/fasted status with age on GLP-1, but not PYY plasma concentrations. Slightly older females had reduced fed plasma GLP-1 suggesting that a relaxation of regulatory control of this incretin hormone may also take place with increasing age in reproductively competent females

    Changes in murine anorectum signaling across the life course

    Get PDF
    Background: Increasing age is associated with an increase in the incidence of chronic constipation and fecal impaction. The contribution of the natural aging process to these conditions is not fully understood. This study examined the effects of increasing age on the function of the murine anorectum.Methods: The effects of increasing age on cholinergic, nitrergic, and purinergic signaling pathways in the murine anorectum were examined using classical organ bath assays to examine tissue function and electrochemical sensing to determine age‐related changes in nitric oxide and acetylcholine release.Key Results: Nitrergic relaxation increased between 3 and 6 months, peaked at 12 months and declined in the 18 and 24 months groups. These changes were in part explained by an age‐related decrease in nitric oxide (NO) release. Cholinergic signaling was maintained with age by an increase in acetylcholine (ACh) release and a compensatory decrease in cholinesterase activity. Age‐related changes in purinergic relaxation were qualitatively similar to nitrergic relaxation although the relaxations were much smaller. Increasing age did not alter the response of the anorectum smooth muscle to exogenously applied ACh, ATP, sodium nitroprusside or KCl. Similarly, there was no change in basal tension developed by the anorectum.Conclusions and Inferences: The decrease in nitrergic signaling with increasing age may contribute to the age‐related fecal impaction and constipation previously described in this model by partially obstructing defecation

    Plasma Ghrelin Concentrations Were Altered with Oestrous Cycle Stage and Increasing Age in Reproductively Competent Wistar Females

    Get PDF
    Changes in appetite occur during the ovarian cycle in female mammals. Research on appetite-regulatory gastrointestinal peptides in females is limited, because reproductive changes in steroid hormones present additional experimental factors to control for. This study aimed to explore possible changes in the orexigenic (appetite-stimulating) gastrointestinal peptide hormone ghrelin during the rodent oestrous cycle. Fed and fasted plasma and stomach tissue samples were taken from female Wistar rats (32–44 weeks of age) at each stage of the oestrous cycle for total ghrelin quantification using radioimmunoassay. Sampling occurred during the dark phase when most eating takes place in rats. Statistical analysis was by paired-samples t-test, one-way ANOVA on normally distributed data, with Tukey post-hoc tests, or Kruskal-Wallis if not. GLM univariate analysis was used to assess main effects and interactions in ghrelin concentrations in the fed or fasted state and during different stages of the ovarian cycle, with age as a covariate. No consistent fed to fasted ghrelin increases were measured in matched plasma samples from the same animals, contrary to expectations. Total ghrelin concentrations did not significantly change between cycle stages with ANOVA, in either fed or fasted plasma or in stomach tissue. This was despite significantly decreased fasted stomach contents at oestrus (P = 0.028), suggesting decreased food intake. There was however a significant interaction in ghrelin plasma concentrations between fed and fasted proestrus rats and a direct effect of age with rats over 37 weeks old having lower circulating concentrations of ghrelin in both fed and fasted states. The biological implications of altered ghrelin plasma concentrations from 37 weeks of age are as yet unknown, but warrant further investigation. Exploring peripheral ghrelin regulatory factor changes with increasing age in reproductively competent females may bring to light potential effects on offspring development and nutritional metabolic programming

    Neurogenic mechanisms in bladder and bowel ageing

    Get PDF
    The prevalence of both urinary and faecal incontinence, and also chronic constipation, increases with ageing and these conditions have a major impact on the quality of life of the elderly. Management of bladder and bowel dysfunction in the elderly is currently far from ideal and also carries a significant financial burden. Understanding how these changes occur is thus a major priority in biogerontology. The functions of the bladder and terminal bowel are regulated by complex neuronal networks. In particular neurons of the spinal cord and peripheral ganglia play a key role in regulating micturition and defaecation reflexes as well as promoting continence. In this review we discuss the evidence for ageing-induced neuronal dysfunction that might predispose to neurogenic forms of incontinence in the elderly

    Construction of a large scale integrated map of macrophage pathogen recognition and effector systems

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In an effort to better understand the molecular networks that underpin macrophage activation we have been assembling a map of relevant pathways. Manual curation of the published literature was carried out in order to define the components of these pathways and the interactions between them. This information has been assembled into a large integrated directional network and represented graphically using the modified Edinburgh Pathway Notation (mEPN) scheme.</p> <p>Results</p> <p>The diagram includes detailed views of the toll-like receptor (TLR) pathways, other pathogen recognition systems, NF-kappa-B, apoptosis, interferon signalling, MAP-kinase cascades, MHC antigen presentation and proteasome assembly, as well as selected views of the transcriptional networks they regulate. The integrated pathway includes a total of 496 unique proteins, the complexes formed between them and the processes in which they are involved. This produces a network of 2,170 nodes connected by 2,553 edges.</p> <p>Conclusions</p> <p>The pathway diagram is a navigable visual aid for displaying a consensus view of the pathway information available for these systems. It is also a valuable resource for computational modelling and aid in the interpretation of functional genomics data. We envisage that this work will be of value to those interested in macrophage biology and also contribute to the ongoing Systems Biology community effort to develop a standard notation scheme for the graphical representation of biological pathways.</p
    corecore