6 research outputs found

    Phyto-Courier, a Silicon Particle-Based Nano-biostimulant: Evidence from Cannabis sativa Exposed to Salinity.

    Full text link
    peer reviewedGlobal warming and sea level rise are serious threats to agriculture. The negative effects caused by severe salinity include discoloration and reduced surface of the leaves, as well as wilting due to an impaired uptake of water from the soil by roots. Nanotechnology is emerging as a valuable ally in agriculture: several studies have indeed already proven the role of silicon nanoparticles in ameliorating the conditions of plants subjected to (a) biotic stressors. Here, we introduce the concept of phyto-courier: hydrolyzable nanoparticles of porous silicon, stabilized with the nonreducing saccharide trehalose and containing different combinations of lipids and/or amino acids, were used as vehicle for the delivery of the bioactive compound quercetin to the leaves of salt-stressed hemp (Cannabis sativa L., Santhica 27). Hemp was used as a representative model of an economically important crop with multiple uses. Quercetin is an antioxidant known to scavenge reactive oxygen species in cells. Four different silicon-based formulations were administered via spraying in order to investigate their ability to improve the plant's stress response, thereby acting as nano-biostimulants. We show that two formulations proved to be effective at decreasing stress symptoms by modulating the amount of soluble sugars and the expression of genes that are markers of stress-response in hemp. The study proves the suitability of the phyto-courier technology for agricultural applications aimed at crop protection

    The Effects of Salinity on the Anatomy and Gene Expression Patterns in Leaflets of Tomato cv. Micro-Tom.

    Full text link
    peer reviewedSalinity is a form of abiotic stress that impacts growth and development in several economically relevant crops and is a top-ranking threat to agriculture, considering the average rise in the sea level caused by global warming. Tomato is moderately sensitive to salinity and shows adaptive mechanisms to this abiotic stressor. A case study on the dwarf tomato model Micro-Tom is here presented in which the response to salt stress (NaCl 200 mM) was investigated to shed light on the changes occurring at the expression level in genes involved in cell wall-related processes, phenylpropanoid pathway, stress response, volatiles' emission and secondary metabolites' production. In particular, the response was analyzed by sampling older/younger leaflets positioned at different stem heights (top and bottom of the stem) and locations along the rachis (terminal and lateral) with the goal of identifying the most responsive one(s). Tomato plants cv. Micro-Tom responded to increasing concentrations of NaCl (0-100-200-400 mM) by reducing the leaf biomass, stem diameter and height. Microscopy revealed stronger effects on leaves sampled at the bottom and the expression analysis identified clusters of genes expressed preferentially in older or younger leaflets. Stress-related genes displayed a stronger induction in lateral leaflets sampled at the bottom. In conclusion, in tomato cv. Micro-Tom subjected to salt stress, the bottom leaflets showed stronger stress signs and response, while top leaflets were less impacted by the abiotic stressor and had an increased expression of cell wall-related genes involved in expansion

    A Study on the Use of the Phyto-Courier Technology in Tobacco Leaves Infected by <i>Agrobacterium tumefaciens</i>

    No full text
    Climate change results in exceptional environmental conditions and drives the migration of pathogens to which local plants are not adapted. Biotic stress disrupts plants’ metabolism, fitness, and performance, ultimately impacting their productivity. It is therefore necessary to develop strategies for improving plant resistance by promoting stress responsiveness and resilience in an environmentally friendly and sustainable way. The aim of this study was to investigate whether priming tobacco plants with a formulation containing silicon-stabilised hybrid lipid nanoparticles functionalised with quercetin (referred to as GS3 phyto-courier) can protect against biotic stress triggered by Agrobacterium tumefaciens leaf infiltration. Tobacco leaves were primed via infiltration or spraying with the GS3 phyto-courier, as well as with a buffer (B) and free quercetin (Q) solution serving as controls prior to the biotic stress. Leaves were then sampled four days after bacterial infiltration for gene expression analysis and microscopy. The investigated genes increased in expression after stress, both in leaves treated with the phyto-courier and control solutions. A trend towards lower values was observed in the presence of the GS3 phyto-courier for genes encoding chitinases and pathogenesis-related proteins. Agroinfiltrated leaves sprayed with GS3 confirmed the significant lower expression of the pathogenesis-related gene PR-1a and showed higher expression of peroxidase and serine threonine kinase. Microscopy revealed swelling of the chloroplasts in the parenchyma of stressed leaves treated with B; however, GS3 preserved the chloroplasts’ mean area under stress. Furthermore, the UV spectrum of free Q solution and of quercetin freshly extracted from GS3 revealed a different spectral signature with higher values of maximum absorbance (Amax) of the flavonoid in the latter, suggesting that the silicon-stabilised hybrid lipid nanoparticles protect quercetin against oxidative degradation
    corecore