55 research outputs found

    Vitamin D Binding Protein Genotype and Osteoporosis

    Get PDF
    Osteoporosis is a bone disease leading to an increased fracture risk. It is considered a complex multifactorial genetic disorder with interaction of environmental and genetic factors. As a candidate gene for osteoporosis, we studied vitamin D binding protein (DBP, or group-specific component, Gc), which binds to and transports vitamin D to target tissues to maintain calcium homeostasis through the vitamin D endocrine system. DBP can also be converted to DBP-macrophage activating factor (DBP-MAF), which mediates bone resorption by directly activating osteoclasts. We summarized the genetic linkage structure of the DBP gene. We genotyped two single-nucleotide polymorphisms (SNPs, rs7041 = Glu416Asp and rs4588 = Thr420Lys) in 6,181 elderly Caucasians and investigated interactions of the DBP genotype with vitamin D receptor (VDR) genotype and dietary calcium intake in relation to fracture risk. Haplotypes of the DBP SNPs correspond to protein variations referred to as Gc1s (haplotype 1), Gc2 (haplotype 2), and Gc1f (haplotype3). In a subgroup of 1,312 subjects, DBP genotype was found to be associated with increased and decreased serum 25-(OH)D3 for haplotype 1 (P = 3 × 10−4) and haplotype 2 (P = 3 × 10−6), respectively. Similar associations were observed for 1,25-(OH)2D3. The DBP genotype was not significantly associated with fracture risk in the entire study population. Yet, we observed interaction between DBP and VDR haplotypes in determining fracture risk. In the DBP haplotype 1-carrier group, subjects of homozygous VDR block 5-haplotype 1 had 33% increased fracture risk compared to noncarriers (P = 0.005). In a subgroup with dietary calcium intake <1.09 g/day, the hazard ratio (95% confidence interval) for fracture risk of DBP hap1-homozygote versus noncarrier was 1.47 (1.06–2.05). All associations were independent of age and gender. Our study demonstrated that the genetic effect of the DBP gene on fracture risk appears only in combination with other genetic and environmental risk factors for bone metabolism

    Targeted Overexpression of Osteoactivin in Cells of Osteoclastic Lineage Promotes Osteoclastic Resorption and Bone Loss in Mice

    Get PDF
    This study sought to test whether targeted overexpression of osteoactivin (OA) in cells of osteoclastic lineage, using the tartrate-resistant acid phosphase (TRAP) exon 1B/C promoter to drive OA expression, would increase bone resorption and bone loss in vivo. OA transgenic osteoclasts showed ∼2-fold increases in OA mRNA and proteins compared wild-type (WT) osteoclasts. However, the OA expression in transgenic osteoblasts was not different. At 4, 8, and 15.3 week-old, transgenic mice showed significant bone loss determined by pQCT and confirmed by μ-CT. In vitro, transgenic osteoclasts were twice as large, had twice as much TRAP activity, resorbed twice as much bone matrix, and expressed twice as much osteoclastic genes (MMP9, calciton receptor, and ADAM12), as WT osteoclasts. The siRNA-mediated suppression of OA expression in RAW264.7-derived osteoclasts reduced cell size and osteoclastic gene expression. Bone histomorphometry revealed that transgenic mice had more osteoclasts and osteoclast surface. Plasma c-telopeptide (a resorption biomarker) measurements confirmed an increase in bone resorption in transgenic mice in vivo. In contrast, histomorphometric bone formation parameters and plasma levels of bone formation biomarkers (osteocalcin and pro-collagen type I N-terminal peptide) were not different between transgenic mice and WT littermates, indicating the lack of bone formation effects. In conclusion, this study provides compelling in vivo evidence that osteoclast-derived OA is a novel stimulator of osteoclast activity and bone resorption

    The role of CCN2 in cartilage and bone development

    Get PDF
    CCN2, a classical member of the CCN family of matricellular proteins, is a key molecule that conducts cartilage development in a harmonized manner through novel molecular actions. During vertebrate development, all cartilage is primarily formed by a process of mesenchymal condensation, while CCN2 is induced to promote this process. Afterwards, cartilage develops into several subtypes with different fates and missions, in which CCN2 plays its proper roles according to the corresponding microenvironments. The history of CCN2 in cartilage and bone began with its re-discovery in the growth cartilage in long bones, which determines the skeletal size through the process of endochondral ossification. CCN2 promotes physiological developmental processes not only in the growth cartilage but also in the other types of cartilages, i.e., Meckel’s cartilage representing temporary cartilage without autocalcification, articular cartilage representing hyaline cartilage with physical stiffness, and auricular cartilage representing elastic cartilage. Together with its significant role in intramembranous ossification, CCN2 is regarded as a conductor of skeletogenesis. During cartilage development, the CCN2 gene is dynamically regulated to yield stage-specific production of CCN2 proteins at both transcriptional and post-transcriptional levels. New functional aspects of known biomolecules have been uncovered during the course of investigating these regulatory systems in chondrocytes. Since CCN2 promotes integrated regeneration as well as generation (=development) of these tissues, its utility in regenerative therapy targeting chondrocytes and osteoblasts is indicated, as has already been supported by experimental evidence obtained in vivo

    Ets-1 Is Essential for Connective Tissue Growth Factor (CTGF/CCN2) Induction by TGF-β1 in Osteoblasts

    Get PDF
    Ets-1 controls osteoblast differentiation and bone development; however, its downstream mechanism of action in osteoblasts remains largely undetermined. CCN2 acts as an anabolic growth factor to regulate osteoblast differentiation and function. CCN2 is induced by TGF-β1 and acts as a mediator of TGF-β1 induced matrix production in osteoblasts; however, the molecular mechanisms that control CCN2 induction are poorly understood. In this study, we investigated the role of Ets-1 for CCN2 induction by TGF-β1 in primary osteoblasts.We demonstrated that Ets-1 is expressed and induced by TGF-β1 treatment in osteoblasts, and that Ets-1 over-expression induces CCN2 protein expression and promoter activity at a level similar to TGF-β1 treatment alone. Additionally, we found that simultaneous Ets-1 over-expression and TGF-β1 treatment synergize to enhance CCN2 induction, and that CCN2 induction by TGF-β1 treatment was impaired using Ets-1 siRNA, demonstrating the requirement of Ets-1 for CCN2 induction by TGF-β1. Site-directed mutagenesis of eight putative Ets-1 motifs (EBE) in the CCN2 promoter demonstrated that specific EBE sites are required for CCN2 induction, and that mutation of EBE sites in closer proximity to TRE or SBE (two sites previously shown to regulate CCN2 induction by TGF-β1) had a greater effect on CCN2 induction, suggesting potential synergetic interaction among these sites for CCN2 induction. In addition, mutation of EBE sites prevented protein complex binding, and this protein complex formation was also inhibited by addition of Ets-1 antibody or Smad 3 antibody, demonstrating that protein binding to EBE motifs as a result of TGF-β1 treatment require synergy between Ets-1 and Smad 3.This study demonstrates that Ets-1 is an essential downstream signaling component for CCN2 induction by TGF-β1 in osteoblasts, and that specific EBE sites in the CCN2 promoter are required for CCN2 promoter transactivation in osteoblasts

    Dysregulation of Gene Expression in a Lysosomal Storage Disease Varies between Brain Regions Implicating Unexpected Mechanisms of Neuropathology

    Get PDF
    The characteristic neurological feature of many neurogenetic diseases is intellectual disability. Although specific neuropathological features have been described, the mechanisms by which specific gene defects lead to cognitive impairment remain obscure. To gain insight into abnormal functions occurring secondary to a single gene defect, whole transcriptome analysis was used to identify molecular and cellular pathways that are dysregulated in the brain in a mouse model of a lysosomal storage disorder (LSD) (mucopolysaccharidosis [MPS] VII). We assayed multiple anatomical regions separately, in a large cohort of normal and diseased mice, which greatly increased the number of significant changes that could be detected compared to past studies in LSD models. We found that patterns of aberrant gene expression and involvement of multiple molecular and cellular systems varied significantly between brain regions. A number of changes revealed unexpected system and process alterations, such as up-regulation of the immune system with few inflammatory changes (a significant difference from the closely related MPS IIIb model), down-regulation of major oligodendrocyte genes even though white matter changes are not a feature histopathologically, and a plethora of developmental gene changes. The involvement of multiple neural systems indicates that the mechanisms of neuropathology in this type of disease are much broader than previously appreciated. In addition, the variation in gene dysregulation between brain regions indicates that different neuropathologic mechanisms may predominate within different regions of a diseased brain caused by a single gene mutation

    Strategies for blocking the fibrogenic actions of connective tissue growth factor (CCN2): From pharmacological inhibition in vitro to targeted siRNA therapy in vivo

    Get PDF
    Connective tissue growth factor (CCN2) is a major pro-fibrotic factor that frequently acts downstream of transforming growth factor beta (TGF-β)-mediated fibrogenic pathways. Much of our knowledge of CCN2 in fibrosis has come from studies in which its production or activity have been experimentally attenuated. These studies, performed both in vitro and in animal models, have demonstrated the utility of pharmacological inhibitors (e.g. tumor necrosis factor alpha (TNF-α), prostaglandins, peroxisome proliferator-activated receptor-gamma (PPAR-γ) agonists, statins, kinase inhibitors), neutralizing antibodies, antisense oligonucleotides, or small interfering RNA (siRNA) to probe the role of CCN2 in fibrogenic pathways. These investigations have allowed the mechanisms regulating CCN2 production to be more clearly defined, have shown that CCN2 is a rational anti-fibrotic target, and have established a framework for developing effective modalities of therapeutic intervention in vivo

    Cartilage-Specific Over-Expression of CCN Family Member 2/Connective Tissue Growth Factor (CCN2/CTGF) Stimulates Insulin-Like Growth Factor Expression and Bone Growth

    Get PDF
    Previously we showed that CCN family member 2/connective tissue growth factor (CCN2) promotes the proliferation, differentiation, and maturation of growth cartilage cells in vitro. To elucidate the specific role and molecular mechanism of CCN2 in cartilage development in vivo, in the present study we generated transgenic mice overexpressing CCN2 and analyzed them with respect to cartilage and bone development. Transgenic mice were generated expressing a ccn2/lacZ fusion gene in cartilage under the control of the 6 kb-Col2a1-enhancer/promoter. Changes in cartilage and bone development were analyzed histologically and immunohistologically and also by micro CT. Primary chondrocytes as well as limb bud mesenchymal cells were cultured and analyzed for changes in expression of cartilage-related genes, and non-transgenic chondrocytes were treated in culture with recombinant CCN2. Newborn transgenic mice showed extended length of their long bones, increased content of proteoglycans and collagen II accumulation. Micro-CT analysis of transgenic bones indicated increases in bone thickness and mineral density. Chondrocyte proliferation was enhanced in the transgenic cartilage. In in vitro short-term cultures of transgenic chondrocytes, the expression of col2a1, aggrecan and ccn2 genes was substantially enhanced; and in long-term cultures the expression levels of these genes were further enhanced. Also, in vitro chondrogenesis was strongly enhanced. IGF-I and IGF-II mRNA levels were elevated in transgenic chondrocytes, and treatment of non-transgenic chondrocytes with recombinant CCN2 stimulated the expression of these mRNA. The addition of CCN2 to non-transgenic chondrocytes induced the phosphorylation of IGFR, and ccn2-overexpressing chondrocytes showed enhanced phosphorylation of IGFR. Our data indicates that the observed effects of CCN2 may be mediated in part by CCN2-induced overexpression of IGF-I and IGF-II. These findings indicate that CCN2-overexpression in transgenic mice accelerated the endochondral ossification processes, resulting in increased length of their long bones. Our results also indicate the possible involvement of locally enhanced IGF-I or IGF-II in this extended bone growth

    Impact of neonatal asphyxia and hind limb immobilization on musculoskeletal tissues and S1 map organization: Implications for cerebral palsy

    No full text
    Cerebral palsy (CP) is a complex disorder of locomotion, posture and movements resulting from pre-, peri- or postnatal damage to the developing brain. In a previous study (Strata, F., Coq, J.O., Byl, N.N., Merzenich, M.M., 2004. Comparison between sensorimotor restriction and anoxia on gait and motor cortex organization: implications for a rodent model of cerebral palsy. Neuroscience 129, 141-156.), CP-like movement disorders were more reliably reproduced in rats by hind limb sensorimotor restriction (disuse) during development rather than perinatal asphyxia (PA). To gain new insights into the underpinning mechanisms of CP symptoms we investigated the long-term effects of PA and disuse on the hind limb musculoskeletal histology and topographical organization in the primary somatosensory cortex (S 1) of adult rats. Developmental disuse (i.e. hind limb immobilization) associated with PA induced muscle fiber atrophy, extracellular matrix changes in the muscle, and mild to moderate ankle and knee joint degeneration at levels greater than disuse alone. Sensorimotor restricted rats with or without PA exhibited a topographical disorganization of the SI cortical hind limb representation with abnormally large, multiple and overlapping receptive fields. This disorganization was enhanced when disuse and PA were associated. Altered cortical neuronal properties included increased cortical responsiveness and a decrease in neuronal selectivity to afferent inputs. These data support previous observations that asphyxia per se can generate the substrate for peripheral tissue and brain damage, which are worsened by aberrant sensorimotor experience during maturation, and could explain the disabling movement disorders observed in children with CP
    corecore