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Abstract

Previously we showed that CCN family member 2/connective tissue growth factor (CCN2) promotes the proliferation,
differentiation, and maturation of growth cartilage cells in vitro. To elucidate the specific role and molecular mechanism of
CCN2 in cartilage development in vivo, in the present study we generated transgenic mice overexpressing CCN2 and
analyzed them with respect to cartilage and bone development. Transgenic mice were generated expressing a ccn2/lacZ
fusion gene in cartilage under the control of the 6 kb-Col2a1-enhancer/promoter. Changes in cartilage and bone
development were analyzed histologically and immunohistologically and also by micro CT. Primary chondrocytes as well as
limb bud mesenchymal cells were cultured and analyzed for changes in expression of cartilage–related genes, and non-
transgenic chondrocytes were treated in culture with recombinant CCN2. Newborn transgenic mice showed extended
length of their long bones, increased content of proteoglycans and collagen II accumulation. Micro-CT analysis of transgenic
bones indicated increases in bone thickness and mineral density. Chondrocyte proliferation was enhanced in the transgenic
cartilage. In in vitro short-term cultures of transgenic chondrocytes, the expression of col2a1, aggrecan and ccn2 genes was
substantially enhanced; and in long-term cultures the expression levels of these genes were further enhanced. Also, in vitro
chondrogenesis was strongly enhanced. IGF-I and IGF-II mRNA levels were elevated in transgenic chondrocytes, and
treatment of non-transgenic chondrocytes with recombinant CCN2 stimulated the expression of these mRNA. The addition
of CCN2 to non-transgenic chondrocytes induced the phosphorylation of IGFR, and ccn2-overexpressing chondrocytes
showed enhanced phosphorylation of IGFR. Our data indicates that the observed effects of CCN2 may be mediated in part
by CCN2-induced overexpression of IGF-I and IGF-II. These findings indicate that CCN2-overexpression in transgenic mice
accelerated the endochondral ossification processes, resulting in increased length of their long bones. Our results also
indicate the possible involvement of locally enhanced IGF-I or IGF-II in this extended bone growth.
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Introduction

CCN2(CCN family 2)/CTGF (connective tissue growth factor)

is a member of the CCN family of secreted proteins, which also

includes Cyr61/CCN1, NOV/CCN3, WISP1/CCN4, WISP2/

CCN5, and WISP3/CCN6. CCN2 regulates diverse cell functions

including mitosis, adhesion, apoptosis, extracellular matrix (ECM)

production, growth arrest, and cellular migration [1,2]. The

multimodular character of CCN factors allows multiple interac-

tions between them and other growth factors such as TGFß,

BMPs, IGFs or VEGF and networking between growth factors,

extracellular matrix, and cell-surface receptors such as integrins

[3]. Thus, it is not surprising that CCN factors are involved in a

multiplicity of effects during development, differentiation, wound

healing, and disease states, including tumorigenesis and fibrosis

[2]. Most prominently, CCN2 has emerged as a major regulator of

chondrogenesis, angiogenesis, and fibrogenesis [4]. CCN2 induces

the migration of endothelial cells [5,6,7] and stimulates the

synthesis of matrix proteins including collagens and fibronectin

[8,9]. It is expressed in various tissues, with highest levels found in

prehypertrophic chondrocytes and vascular tissues in developing

embryos (for reviews, see refs [4,10]. Previously we demonstrated

in a series of in vitro studies that CCN2 stimulates both the

proliferation and synthesis of type II collagen and proteoglycans of

growth-plate chondrocytes [11], human chondrosarcoma-derived

chondrocytic cells [11,12], articular chondrocytes [13], and

auricular chondrocytes [14]. Moreover, it induces hypertrophy
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and calcification of growth-plate chondrocytes, but not those of

articular or auricular chondrocytes [11,14,15]. Also, osteoblast

proliferation and maturation are stimulated by CCN2 [16]. These

in vitro findings are consistent with studies on CCN2-deficient

mice, which develop skeletal dysmorphisms including kinky bone

and cartilage elements, due to impairment of chondrocyte

proliferation and extracellular matrix deposition in the hypertro-

phic zone [17]. As a result of CCN2 deficiency, growth-plate

angiogenesis and endochondral ossification are partially impaired,

and CCN2-deficient mice die after birth because of respiratory

failure caused by the skeletal defects [17]. Although multiple

effects of CCN2 on differentiation, proliferation, and matrix

synthesis of chondrocytes, fibroblasts, endothelial cells, and

osteoblasts have been reported, the specific role of CCN2

synthesized by chondrocytes during cartilage and bone develop-

ment in vivo remains unclear.

To elucidate the role of chondrocyte-derived CCN2, we

generated CCN2-over-expressing mice with the gene expressed

under the control of a 6 kb-Col2a1 promoter that included a

cartilage-specific enhancer element in the first intron of the Col2a1

gene and obtained in vivo evidence for a key role of CCN2 in

regulating chondrocyte gene expression and cartilage differentia-

tion. Furthermore, our data suggest that CCN2 regulates the

endochondral ossification process in long bones partially through

increased expression of IGF-I and IGF-II.

Materials and Methods

Generation of Transgenic Mice
To express the ccn2 as transgene in chondrocytes, we cloned the

cDNA encoding a HA-tagged mouse ccn2 gene into a vector

containing 3 kb of the Col2a1 promoter and 3.02 kb of the intron 1

sequence [18,19]. The LacZ gene preceded by an internal

ribosomal entry site was placed downstream of the ccn2 cDNA

(Fig. 1A). This construct was microinjected into the pronuclei of

fertilized C57BL/6CrSlc eggs to generate transgenic mice.

Routine genotyping to identify the transgene was done by

detecting the LacZ gene by performing a polymerase chain

reaction (PCR) on genomic DNA. The primer sequences used

were 5-GCATCGAGCTGGGTAATAAGCGTTGGCAAT-39

and 5-GACACCAGACCAACTGGTAATGGTAGCGAC-39.

All experimental procedures were performed in accordance

with the Guidelines for Proper Conduct of Animal Experiments of

the Science Council of Japan and approved by the Animal

Research Control Committee of Okayama University (Approval

No.: OKU-2012113).

LacZ Staining and Skeletal Preparation
LacZ activity was detected by staining with X-gal (5-bromo-4-

chloro-3-indolyl-D-galactopyranoside; Roche) for 3–6 hours fol-

lowing fixation with glutaraldehyde and formaldehyde as de-

scribed earlier [20]. For staining of embryos older than 15.5 days,

the skin and internal organs were removed before fixation. LacZ-

stained embryos were postfixed overnight in 4% formaldehyde,

dehydrated, and embedded in paraffin. Sections were counter-

stained with eosin. Some LacZ-stained embryos were cleared with

KOH –glycerol. Skeletal morphology was analyzed by alizarin red

and alcian blue staining followed by clearing with 1% (w/v) KOH

[21,22].

RNA Preparation and Northern Hybridization
RNA was prepared either directly from cartilage or from

chondrocyte cultures. For the direct RNA preparation, rib cages of

E18.5 or 19.5 embryos were separated from soft tissues, and single

ribs were isolated. The isolated ribs were separated from bone, and

the cartilage was soaked in Isogen (Nippon Gene) and homoge-

nized until the tissue clumps had disappeared. The cartilage RNA

were purified according to the Isogen instructions, and the purified

RNA were further cleaned by using the RNeasy kit (Qiagen). For

the RNA preparation from chondrocytes, the cells from rib

cartilage were cultured as described below, harvested, and then

subjected to RNA purification using the RNeasy kit. For Northern

hybridization, 10 mg of RNA from costal cartilage was resolved on

an agarose gel, transferred onto a nylon membrane (Bio-Rad), and

hybridized with [32P]-labeled LacZ or ccn2 probes as described

previously [23].

Western Blotting
Rib cartilage from E18.5 embryos was isolated as described

above and homogenized with lysis buffer (50 mM Tris-HCl,

pH 7.4, containing 150 mM NaCl, 1% Triton X-100, 0.1% SDS,

and 1 mM PMSF). After centrifugation, the supernatant was

collected; and 6 mg of protein per lane was loaded onto an SDS-

PAGE gel. Western blotting was done as described previously [24]

by using anti-HA (Covance), anti-actin (Sigma), anti-phospho

IGF-1 receptor (Cell Signaling), and anti-IGF-1 receptor (Cell

Signaling) antibodies.

Histological Examination
For histological analysis, tissues from E17.5 and E19.5 embryos

and from 1- and 3- day postnatal mice were fixed with 10%

formaldehyde/PBS, demineralized with 0.5 M EDTA, and

embedded in paraffin. Then 7 mm-thick-sections were stained

with hematoxylin, eosin, and safranin-O. Immunohistochemical

staining was performed by using a peroxidase-conjugated polymer

(Nichirei, Japan) and anti-type II collagen MoAb (CII D3, [25] or

anti-type X MoAb (X53, kindly provided by Dr. K. von der Mark,

Germany, [26,27]. For cell proliferation analysis, a PCNA staining

kit (Zymed) was used. For detection of apoptotic cells, TUNEL

analysis was performed by using an In Situ Cell Death Detection

Kit, POD (Roche).

Cell Cultures
For preparation of primary cultures, chondrocytes were isolated

from the rib cages of 18.5- or 19.5-day embryos and/or newborn

mice as described previously [28]. Briefly, the rib cages were

digested with collagenase (0.1% collagenase P, Roche, in F12/

DMEM containing 10% fetal calf serum) after adhering connec-

tive tissue and muscle had been thoroughly removed by trypsin

pretreatment. The cells were grown to confluence for 1 month to

hypertrophy in a-modification of minimum essential medium (a-

MEM) containing 10% fetal bovine serum (FBS) and supplement-

ed with 50 mg/ml of ascorbic acid with or without recombinant

CCN2, and then harvested for RNA extraction.

For preparation of CCN2 recombinant protein, human ccn2

cDNA was amplified by PCR and subcloned into the pET-15b

vector (Novagen), which harbors a His-tag; and E. coli

BL21(DE3)pLysS Rosetta strain cells were subsequently trans-

formed with this vector. Expressed His-tagged CCN2 protein was

purified by the use of Ni-NTA agarose.

For inhibition of autophosphorylation of IGF-1 receptor, the

IGF-1R inhibitor PPP (Calbiochem) was used, at a concentration

of 60 nM. Anti-CCN2 monoclonal antibody (11H3, kindly

provided by Dr. Seto, Nippn Flour Mills Co., LTD.), which had

an inhibitory effect on the CCN2-mediated enhancement of

aggrecan gene expression was also used to inhibit this autophos-

phorylation.

Enhanced IGF-IGFR Pathway in CCN2 Transgenic Mice
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Quantitative real-time PCR
Reverse transcription (RT) was performed with 0.5 mg of total

RNA as described above, and the resulting cDNA was amplified in

triplicate by using the SYBR-Green PCR assay (TOYOBO SYBR

Green PCR Master Mix; TOYOBO, Osaka, Japan), after which

the products were detected with a LightCyclerTM system (Roche,

Basel, Switzerland). PCR reaction mixtures were incubated for

15 min at 95uC, followed by 50 amplification cycles of 30 s

annealing at 60uC, 40 s extension at 72uC, and 30 s denaturation

at 95uC. GAPDH was used to standardize the total amount of

cDNA, as described previously [29].

The primers designed for real-time PCR were the following:

ccn2 (forward, 5’-GGTAAGGTCCGATTCCTACCAGG-3’; re-

verse, 5’-CTAGAAAGGTGCAAACATGTAAC-3’); gapdh (for-

ward, 59-GCCAAAAGGGTCATCATCTC-39; reverse, 59-

GTCTTCTGGGTGGCAGTGAT-39); aggrecan (forward, 59-

TCTTCAGTCCCGTTCTCCAC-39; reverse, 59-AACAT-

CACTGAGGGCGAAGC-39); Col2a1 (forward, 59-ATGACAA

TCTGGCTCCCAACACTGC-39; reverse, 59-GACCGGCCC-

TATGTCCACACCGAAT-39); Col10a1 (forward, 59-

CCCAGGGTTACCAGGACAAA-39; reverse, 59-

GTTCACCTCTTGGACCTGCC-39); vegf (forward, 59-CCCAT-

GAAGTGATCAAGTTC-39; reverse, 59-ACCCGCAT-

Figure 1. Generation of Col2a1-ccn2 transgenic mice. (A) Schematic representation of the construct of the expression of HA-tagged CCN2 and
IRES-LacZ in chondrocytes driven by the 6-kb Col2a1 promoter-enhancer. The original initiation codon of Col2a1 was mutated to CTG to facilitate
translation from downstream cDNA. (B) Genotyping of transgenic mice (tg) by PCR to detect the transgene. wt, wild type. The location of the primers
used are indicated in ‘‘A’’ by arrows. (C) Skeletal preparation of a newborn mouse after whole-mount X-gal staining, showing cartilage-specific
expression of the transgene. (D) Sagittal sections of ulnae from wt and tg after whole-mount X-gal staining. All of the cartilaginous cells showed X-gal
staining. The sections were counter-stained with Safranin-O. (E) Analysis of transgene expression by Northern hybridization using total RNA from tg
and wt cartilage. LacZ (top) and ccn2 (middle) probes were used to detect transgenic and endogenous ccn2, respectively. (F) Western blot (WB)
analysis using cell lysates from tg and wt cartilage and anti-HA antibody recognizing only the CCN2-HA transgene products (left blot). The HA-tagged
CCN2 was expressed in cartilage of tg mice. A Western blot of the same cell lysate reacted with anti-actin antibody as a loading control is also shown
(right blot).
doi:10.1371/journal.pone.0059226.g001
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GATCTGCATGG-39); mmp9 (forward, 59-GGAACTCACAC-

GACATCTTCCA-39; reverse, 59-GAAACTCACACGCCA-

GAAGAATTT-39); IGF-I (forward, 59- GTGTGGACC-

GAGGGGCTTTTACTTC-39; reverse, 59-

GCTTCAGTGGGGCACAGTACATCTC-39); and IGF-II (for-

ward, 59-GTGGCATCGTGGAAGAGTGC-39; reverse, 59-

GGGGTGGGTAAGGAGAAACC-39); lacZ (forward, 59-

GGTTACGATGCGCCCATCTA-39; reverse, 59-ACGGCG-

GATTGACCGTAAT-39).

Micromass Culture
For preparation of micromass cultures, limbs from E11.5

embryos were digested in 0.05% trypsin for 1 hour on ice. After

the cells had been suspended by pipeting, they were concentrated

in 10% FCS-containing DMEM/F12 to 16107 cells/ml. Ten

microliters of cell suspension containing 16105 cells was placed in

the center of each well of a 24-well plate; and the cells were

allowed to adhere to the bottom of the well for 1 h after the plate

had been placed in an incubator (5% CO2, 37uC). Thereafter,

1 ml of culture medium was added to each well; and the medium

was replaced every 24 hours. Cell condensation in the cultures was

visible after 1 or 2 days, and cartilage nodules appeared after 3

days. Some cells were stained with Alcian blue (pH 1) to visualize

cartilage, and others were harvested for extraction of total RNA.

Analysis of Bone Mineralization
The femora from 8-week–old mice were removed, and the

bones were scanned over the region from 1.2 mm to 4.0 mm from

the distal epiphysial end by peripheral quantitative computed

tomography (pQCT) analysis (XCT Research SA+[Stratec

Medizintechnik GmbH, Pforzheim, Germany]). For the micro-

computed tomography (micro-CT) analysis, the same position was

scanned by using a Skyscan 1072 micro-CT machine (Skyscan,

Aartselaar, Belgium).

Results

Cartilage-specific Over-expression of ccn2 in
Chondrocytes of Transgenic Mice Caused Increased Bone
Size

For generation of transgenic mice over-expressing CCN2 in

cartilage, HA-tagged ccn2 cDNA was cloned into a vector

containing 3 kb of the Col2a1 promoter, 3.02 kb of the Col2a1

intron 1 sequence, and IRES-LacZ (Fig. 1A). The purified vector

DNA was injected into oocytes, and 2 founders tested positive for

the ccn2–lacZ transgene by PCR (Fig. 1B) and were kept to

establish transgenic lines. X-gal staining of newborn transgenic

mice showed intense, cartilage-specific lacZ expression in all

cartilage elements (Fig. 1C). In tissue sections of newborns, all

growth-plate and resting chondrocytes were positive after X-gal

staining, indicating that the expression domains of the transgene

overlapped with those of endogenous ccn2 (Fig. 1D; and see also

[30]).

Over-expression of the ccn2 transgene in chondrocytes of the

transgenic mice was confirmed by Northern and Western blot

analyses. Northern blot hybridization of total RNA extracted from

rib cage chondrocytes of E18.5 embryos with probes for LacZ and

ccn2 showed a reaction with the same 6-kb transcript in transgenic,

but not wt, chondrocyte RNA (Fig. 1E, LacZ and ccn2). The

intensity of the transgene signal obtained with the ccn2 probe was

about 75% of that of the endogenous ccn2 mRNA (Fig. 1E, middle

panel). Endogenous ccn2 mRNA was also up-regulated (,110% of

wild type) in transgenic cartilage (Fig. 1E, ccn2), possibly due to an

autocrine mechanism. The HA-tagged CCN2 protein was

detected in cell lysates from transgenic rib cartilage by Western

blot analysis using an anti-HA antibody (Fig. 1F).

At day E15.5 of embryonic development, no major abnormal-

ities in cartilage or bone development were detected in the

transgenic animals (Fig. 2A). At 8 weeks, however, the majority of

the transgenic mice were about 12% larger than their wild-type

littermates (Fig. 2B).

For detailed analysis of the morphological alterations in the

skeleton of postnatal transgenic mice, tibiae of transgene and wild-

type newborns were sectioned, and their length was measured.

The levels of ccn2 mRNA in chondrocytes cultured from rib

cartilage of the same animal were also monitored. Quantitative

real-time PCR analysis of ccn2 mRNA levels in rib chondrocytes in

primary culture revealed high-expressing transgenic mice (e.g.,

#76,#74), as well as low-expressing transgenic littermates (#tg72)

in the same litter, which expressed ccn2 at about the same level as

the wt littermates (Fig. 2C). Comparison of tibial length and the

ccn2 mRNA expression level of chondrocytes prepared from rib

cartilage of the same animal showed a positive correlation (Fig. 2C

and D). The length of diaphyses of tibiae from wt and transgenic

littermates at the P3 stage was also measured. The expression level

of ccn2 mRNA in primary cultures of rib chondrocytes from

littermates was monitored, and tibiae from pups with significantly

higher levels of ccn2 mRNA compared with wt levels were used for

Figure 2. Skeletal analysis of Col2a1-ccn2 transgenic mice. (A) Skeletal preparation of representative tg and wt littermates at E15.5 after alizarin
red and Alcian blue staining. Skeletal development in tg mice appeared normal at this stage. (B) At 8 weeks the transgenic mice consistently showed
an ,12% increase in body size. (C) Quantitative analysis by real-time PCR of ccn2 mRNA levels in primary cultures of tg and wt rib chondrocytes
revealed high-expressing transgenic mice (e.g., #76,#74) in each litter, besides low-expressing littermates (#tg72), the latter of which expressed ccn2
at about the same level as the wt littermates (see also Fig. 2D). Real time-RCR analysis was repeated at least 2 times for each RNA preparation, and the
2 founder lines showed similar variations, but basically the same results. (D) Hematoxylin-eosin (HE) staining of transgenic and wild-type P1 tibiae
from the same littermates as shown in Fig. 2C. Tibiae from transgenic mice showed a relatively extended length of the diaphyses in the high-
expressing transgenic littermates. Tg and wt with a number indicate transgenic and non-transgenic littermates, respectively. Six litters from 2
different founder lines were investigated. (E-1) Diaphysis length of tibiae from transgenic and wild-type littermates of a P3 litter. Tibial diaphysis
lengths of only pups that showed significantly enhanced levels of ccn2 mRNA, measured in primary cultures of rib chondrocytes were measured.
Serial sections (5–7 slides) were randomly selected every 3 slides from a single tibia, and stained with HE. The images were incorporated into a
computer, and the length of diaphyses were measured. Bars indicate the mean length and standard deviations of diaphyses of tibia from wild-type
and transgenic littermates (e.g. 2 wt, 8 tg). (E-2) Mean length of diaphyses of tibiae from the wild-type and transgenic mice indicated in E-1. *:
p,0.0001. Two different founder lines with 3 litters each were analyzed and similar results were obtained. (F) Left: Representative micro-CT image
(cross section) of femora of 8-week-old tg and wt littermates. Right: Positions of measurement in femur. (G) Peripheral quantitative computed
tomography analysis of bone density and mineral content was made at 2 sites, one 1.2 mm (site #1, blue), and the other 4.0 mm (site #2, red), distal
to the growth plate, as indicated in ‘‘F’’ (right). Bars represent the mean 6SD (n = 9, males). In transgenic bones significant enhancement was seen in
total mineral content (tg: 1.3660.08 mg/mm vs. wt: 1.1060.12 mg/mm), in trabecular mineral content (tg: 0.4960.01 mg/mm vs. wt: 0.3860.01 mg/
mm), and in cortical thickness (tg: 0.06060.013 mm vs. wt: 0.04960.021 mm); but only in the femora at site #1 were the differences significant
(*P,0.05).
doi:10.1371/journal.pone.0059226.g002
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comparison of length of diaphyses (Fig. 2E–1). Between 5–7 slides

were randomly selected from serial sections of each tibia and

stained with HE; and the length of diaphyses was measured by

using an image analysis program. All of the transgenic tibiae with

significantly enhanced expression levels of ccn2 mRNA showed

increased tibial length as compared with the wt tibiae (Fig. 2E–1).

Comparison of mean length of diaphyses from 3 wt

(5.89760.116 mm) and 3 transgenic mice (6.22560.080 mm)

showed a significant difference (P,0.0001, Fig. 2E–2).

Over-expression of CCN2 Increased Bone Density, Extent
of Mineralization of Cancellous Bone, and Thickness of
Cortical Bone

Further evidence for a stimulation of bone growth by CCN2 in

transgenic animals was obtained when bone density and mineral

content of cancellous bone were monitored by using peripheral-

quantitative computed-tomography (pQCT) analysis. For these

studies, 8-week-old femora from 4 wt and 5 tg littermates were

analyzed for mineral content and cortical bone thickness at 2 sites,

one 1.2 mm, and the other more central 4.0 mm distal from the

growth plate (Fig. 2F). Significant differences (p,0.05) in total

mineral content (tg: 1.3660.08 mg/mm vs. wt: 1.1060.12 mg/

mm), trabecular mineral content (tg: 0.4960.01 mg/mm vs. wt:

0.3860.01 mg/mm), and cortical thickness (tg: 0.06060.013 mm

vs. wt: 0.04960.021 mm) were observed for the part of the femora

closer to the growth plate (Fig. 2F and 2G), but not for the central

site (data not shown).

Over-expression of CCN2 in Chondrocytes Caused
Enhanced Accumulation of Extracellular Matrix and
Shortened Hypertrophic Zones

To examine the possibility that the extended skeletal growth of

ccn2 transgenic mice may have been due to enhanced production

of cartilage matrix in the epiphysis, we analyzed the extracellular

deposition of proteoglycans and type II collagen in the cartilage

matrices by staining with safranin O and anti-type II collagen,

respectively. Safranin-O staining indicated consistently an en-

hanced density of proteoglycans in the transgenic cartilage in

comparison with cartilage of wt littermates (Fig. 3A). This

observation is in accordance with our previous studies showing

that CCN2 promotes proteoglycan synthesis in chondrocytes [11].

Also, the immunohistological analysis of type II collagen showed

an enhanced reaction in resting chondrocytes and in the growth

plate (Fig. 3B and Figure S1A). These results indicate that the

over-expression of CCN2 enhanced the production and deposition

of extracellular proteoglycans and type II collagen, which is in line

with our previous in vitro findings. Surprisingly, however, the

enhanced matrix deposition did not result in an increase in the size

of the cartilaginous epiphysis; rather, the extended bone length

was the result of an elongated bony shaft of the diaphysis.

Staining of the skeleton of transgenic embryos with type X

collagen antibodies indicated that the hypertrophic zone was

shorter in the transgenic embryos than in their wt littermates

(Fig. 3C). This observation suggests an acceleration of chondrocyte

proliferation and maturation, but possibly also accelerated

cartilage resorption and chondrocyte apoptosis in these transgenic

animals. Therefore, we next measured chondrocyte proliferation

and apoptosis rates in the growing long bones of ccn2 transgenic

animals and their wt littermates.

Over-expression of CCN2 Resulted in Enhanced Cell
Proliferation and Slightly Elevated Apoptosis of
Epiphyseal Chondrocytes

In order to assess whether the enhanced bone growth of CCN2

transgenic animals was due to enhanced cell proliferation, we

stained sections of E19.5-day transgenic and wt embryos with an

antibody against proliferative cell nuclear antigen (PCNA). The

data show that over-expression of CCN2 stimulated chondrocyte

proliferation predominantly in the proliferative zone, but also in

the resting zones (Fig. 3D). This observation is in accordance with

previous in vitro studies showing that CCN2 promotes chondrocyte

proliferation [11].

Curiously, however, staining for apoptotic cells in the growth

plate of P3 by using the TUNEL assay revealed slightly, but not

significantly, enhanced accumulation of apoptotic cells at the

cartilage-bone interface and in the adjacent subchondral zone in

the transgenic embryos as compared with their numbers in the

wild-type (Fig. S1B). The length of the cartilaginous epiphyses

seemed unaffected, since chondrocyte proliferation, cartilage

matrix deposition, maturation, cartilage resorption, apoptosis,

and assembly of trabecular bone were accelerated by the over-

expressed CCN2.

Over-expression of CCN2 in Chondrocytes Resulted in
Enhanced Gene Expression of Col2a1 and aggrecan, and
in Enhanced Chondrocyte Maturation in vitro

The increased accumulation of proteoglycan and type II

collagen in the cartilage matrix of transgenic animals raised the

question as to whether ccn2 over-expression in chondrocytes

stimulated cartilage and bone growth by enhancing cell prolifer-

ation, by stimulating the production of extracellular matrix or by

accelerating the differentiation and maturation of chondrocytes.

To obtain high ccn2 transgene-expression, we crossed transgenic

male and female mice and monitored the effects of over-expression

of CCN2 in chondrocytes on the expression of extracellular matrix

genes. RNA was extracted from short-term primary cultures of rib-

cage chondrocytes from E18.5 transgenic or wild-type embryos

and analyzed for lacZ, ccn2, and Col2a1 mRNA levels by

quantitative real-time PCR. The data showed about equal levels

of lacZ expression in chondrocytes of transgenes #72,74, 76, 77

and 79, and a 2–3 fold higher level of the lacZ expression in tg #73

and #75, indicating that offspring #73 and #75 may bear double

copies of transgene (Fig. 4A). Accordingly, the ccn2 level in

chondrocytes derived from those embryos (#73, 75 tg) was 2–3

Figure 3. CCN2 overexpression causes enhanced type II collagen and proteoglycan deposition, enhanced chondrocyte
proliferation and shortening of the hypertrophic cartilage zone. Tibiae from P1 littermates were stained with safranin-O for proteoglycans
(A, left) and with anti-type II collagen antibody (B, left). Whole littermates were analyzed and the color intensity of 3 different wt or tg individuals was
measured densitometrically; and the mean values are presented. (A, right; and B, right). *: p,0.005. Typical images from tg and wt littermates are
shown. (C, left) Comparison of hypertrophic cartilage zone of CCN2 transgenic littermates. Tibiae were stained with type X collagen antibody. (C,
right) The hypertrophic zone of tg cartilage appeared shorter compared with that of the wt cartilage. (D) Immunohistochemical analysis of
proliferative cell nuclear antigen (PCNA) in tibiae of ccn2 tg embryos at E19.5. Proliferative cells were observed in the whole epiphyseal cartilage of tg
animals, whereas they were restricted to the proliferative zone of the wt littermates. The number of PCNA-positive cells inside of the boxed area was
counted in 5 fields of 3 comparable wt and tg sections. Mean values indicate enhanced chondrocyte proliferation in the tg cartilage (graph at the
lower right). *: p,0. 05.
doi:10.1371/journal.pone.0059226.g003
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fold enhanced as compared with the level for the wt chondrocytes

(#78 wt, Fig. 4B). Also tg #76 and #77 showed enhanced levels

of ccn2 expression, whereas ccn2 expression levels in tg #72, #74

and # 79 were not much higher than endogenous ccn2 levels

measured in the wt embryo #78, perhaps due to inactivation of

the transgene. Tg chondrocytes with high over-expression of ccn2

mRNA (#73, 75 tg), but also tg chondrocytes of #76 and 77

showed enhanced levels of Col2a1 mRNA as compared with the wt

level (#78 wt), as revealed by real-time PCR analysis (Fig. 4B and

C), whereas tg cultures with low overexpression of ccn2 (#72, 74,

and 79) showed also low col2a1 expression. To confirm the

enhanced expression of Col2a1 as well to estimate that of aggrecan

mRNA in tg chondrocytes, we pooled primary–cultured chon-

drocytes from tg and wt littermates, and determined their ccn2,

col2a1, aggrecan mRNA levels (figure S2). The levels of all 3 mRNA

were greater in the tg than in the wt pooled cells.

The enhanced levels of Col2a1 mRNA in the transgenic

chondrocytes were also retained after 1 month in culture. During

that time, chondrocytes ceased to proliferate and started to

mature, but the ccn2 transgene over-expression in tg cultures #86–

88 remained at a high level compared with wt cultures #83–85 or

low expressing tg cultures #80–82 (Fig. 5A). Primary cultures of

chondrocytes with high levels of over-expressed ccn2 mRNA

continued to show strongly elevated aggrecan (Fig. 5B, 15-20,000

fold enhancement) and Col2a1 (Fig. 5C, 100–1000 times

enhancement) mRNA levels. The expression of Col10a1, a marker

of hypertrophy, and that of vegf and of mmp-9, both vascular

invasion factors expressed in the hypertrophic zone and boundary

between cartilage and bone, were also enhanced; but not at the

same extent as the enhancement of aggrecan and col2a1 expression

(Fig. 5D, 3–10 fold; 5E, 1.5–3 fold; and 5F, 1.5–3 fold

enhancement). These results are in accordance with in vitro studies

on the effect of ccn2 on cultured chondrocytes [11] and are

consistent with the notion that ccn2 over-expression stimulated

chondrocyte maturation.

Over-expression of ccn2 Under the Control of the col2a1
Promoter Accelerated Chondrogenesis

To investigate the effect of over-expression of ccn2 on

chondrogenic differentiation, we prepared micromass cultures of

mesenchymal cells from 11.5-day embryonic transgenic and wt

mouse limb buds. Mesenchymal cells from transgenic embryos

started to develop Alcian blue-positive cartilaginous nodules after

2 days in culture (data not shown). After 3 days the cartilaginous

nodule formation was significantly enhanced in cultures prepared

from ccn2-overexpressing limb-buds cells as compared with that

wild-type cells (Fig. 5G). The gene expression of ccn2, Col2a1 and

Figure 4. Gene expression analysis reveals enhanced Col2a1
and ccn2 in chondrocyte primary cultures of Col2a1-ccn2
transgenic mice. To obtain high ccn2 transgene-expressing litter-
mates, we crossed transgenic male and female mice within same
founder line; and expression of LacZ, ccn2, and Col2a1 mRNA was
measured by real-time PCR from 5 d chondrocyte cultures prepared
from E18.5 wt and tg embryos. LacZ analysis revealed that high and low
lacZ-expressing tg littermates and 1 wt were obtained (A). On average,
ccn2 expression levels in tg chondrocytes were significantly higher than
those in wild-type littermates (B). Col2a1 mRNA levels in tg
chondrocytes were 2–3 fold higher than those in wt chondrocytes
(C). Primary cultures of rib chondrocytes from individual littermates
were prepared 3 times from each of the 2 founder lines, and total RNA
were prepared. Real time-RCR analysis was repeated at least 2 times for
each RNA preparation; and the 2 founder lines showed similar
variations, but gave basically the same results. Primary-chondrocytes
from ccn2 tg and wt littermates were also pooled; and gene expression
was analyzed as shown in figure S2.
doi:10.1371/journal.pone.0059226.g004
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aggrecan was also up-regulated in ccn2 transgenic micromass

cultures as measured by quantitative RT-PCR (Fig. 5H, I and J,

respectively).

Over-expression of CCN2 Enhanced Expression of IGF-I
and IGF-II

In order to elucidate the mechanism of growth stimulation by

the over-expressed CCN2, we analyzed changes in expression

levels of growth factors known to be involved in skeletal growth.

Remarkably, the RNA from tg chondrocytes contained clearly

enhanced expression levels of IGF-I and IGF-II mRNA (Fig. 6A).

This finding was confirmed by examining primary-cultured

chondrocytes pooled from tg and wt littermates (Figure S3). This

finding suggests that, in addition to the possible direct effects of

over-expressed CCN2, these enhanced levels of IGF-I or II might

have been responsible for the stimulation of cortical bone growth,

as well as for the enhanced Col2a1 and aggrecan expression observed

in the CCN2-over-expressing mice. To confirm this notion, we

treated primary cultures of chondrocytes from 18.5-day wt

embryos for 5 days with recombinant CCN2. The result showed

a several-fold increase in the levels of IGF-I and IGF-II mRNA as

well as a strong increase in endogenous ccn2 expression (Fig. 6B).

Figure 5. Ccn2 overexpression on Col2a1-ccn2 transgenic mice stimulates expression of marker gene of late hypertrophy and
chondrogenesis of limb bud mesenchymal cells. For real-time PCR analysis of gene expression, primary chondrocytes isolated from ribs of ccn2
tg and wt littermates were cultured for 1 month under differentiation-promoting conditions (A–F). In high-expressing tg samples, high levels of ccn2
mRNA were retained during the entire culture time; whereas low expressers showed ccn2 mRNA levels similar to those of wt chondrocytes (A).
Expression of ECM components such as aggrecan (B) and Col2a1 (C) was strongly up-regulated in the cultures that high levels of ccn2 mRNA. Markers
of late hypertrophic chondrocytes such as Col10a1 (D), vegf (E), and mmp9 (F) were also upregulated in those cultures. Expression levels of 1
representative litter out of 3 litters are shown. Primary 1 month cultures of rib chondrocytes from individual littermates were prepared twice from 2
founder lines; and total RNA was extracted. Real time-RCR analysis was repeated at least twice for the each RNA preparation. The 2 founder lines
showed similar variations, but basically the same results. (G–J) Micromass cultures of mesenchymal cells derived from tg and wt E11.5 littermates.
After 3 days in culture, nodule formation was accelerated in the cultures derived from ccn2-overexpressing mice as shown by Alcian blue (pH 1, G)
and RNA was extracted for real-time PCR analysis. Cultures prepared from ccn2 over-expressing mice showed enhanced expression of ccn2 (H), Col2a1
(I), and aggrecan (J) mRNA. *: p,0.005. RNA of each littermates was individually analyzed and nodule formation among ccn2 wt or tg was similar.
Typical images of ccn2 wt and tg are shown. Real time-RCR analysis was repeated at least 2 times for each RNA preparation. Micromass cultures of
mesenchymal cells derived from E11.5 littermates were prepared 4 times from 2 founder lines, and basically similar results were obtained.
doi:10.1371/journal.pone.0059226.g005
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Figure 6. CCN2 stimulates IGF-IGFR pathway. Enhanced expression of IGF-I and IGF-II in primary cultures was found in primary cultures of
chondrocytes prepared from the cartilage of ccn2-over-expressing mice, and in wt chondrocytes after treatment with recombinant CCN2. (A) Real-
time PCR analysis of total RNA from tg cartilage which showed higher expression of ccn2 (107 tg) than wt cartilage (105 wt) also showed enhanced
expression of IGF-I and II, whereas 106 tg with low ccn2 overexpression showed no enhanced IGF-II, but enhanced IGF-I expression. *:p,0.05. (B)
Addition of recombinant CCN2 (50 ng/ml) to primary cultures of wt mouse rib chondrocytes stimulated IGF-I and II mRNA as well as ccn2 mRNA
expression. Primary cultures of chondrocytes were prepared from wt E18.5 embryos; and the cells were seeded at 26105 cells in 3.5-cm dishes with or
without rCCN2 in the media, and incubated for 5 days. mRNA levels were standardized with gapdh; and all reactions were done in triplicate. Values for
1 wt and 4 wt are from 2 independently generated cultures. *:p,0.005. (C) Phosphorylation of IGF receptor induced by addition of rCCN2 (100 ng/
ml) for 24 hours to primary cultures of wt rib chondrocytes, and inhibition of this phosphorylation of IGFR by PPP, an inhibitor of
autophosphorylation of IGFR (upper panel). Aggrecan mRNA levels were measured (lower panel) and standardized to gapdh; and all reactions were
done in triplicate. (D) Enhanced phosphorylation of IGFR in ccn2-overexpressing chondrocytes and inhibition of phosphorylation of IGFR by CCN2
antibody. Primary cultures of chondrocytes were pooled from P3 rib cages of ccn2 tg and wt littermates; and cells were seeded at 26105 cells in 3.5-
cm dishes and cultured for 2 days until the cells had reached the confluent state. CCN2 antibody or control IgG was added to the media, and the
cultures were then incubated for 24 hours, after which the cells were collected with lysis buffer.
doi:10.1371/journal.pone.0059226.g006
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In order to elucidate whether CCN2 stimulated IGF-IGF receptor

pathway, we examined the autophosphorylation of the IGF-1

receptor in response to the addition of CCN2. CCN2 enhanced

the autophosphorylation of IGF-1 receptor (Fig. 6C and Figure

S3), and the addition of PPP, IGFR inhibitor, abolished it (Fig. 6C).

The CCN2-enhanced expression of aggrecan mRNA was also

abolished by the addition of the IGFR inhibitor (Fig. 6C). The

ccn2-overexpressing chondrocytes from ccn2 tg rib cartilage showed

enhanced phosphorylation of IGFR compared with wt chondo-

cytes; accordingly, the CCN2 neutralizing antibody, 11H3,

repressed this autophosphorylation (Fig. 6D). The addition of

11H3 antibody down-regulated the expression of ccn2, igf1, and

igf2 mRNA (Figure S4). This finding of enhanced expression of

IGF-I and -II in CCN2-transgenic chondrocytes is consistent with

our finding of enhanced cortical bone growth and mineralization

(see discussion).

Discussion

Previous in vitro studies on the response of rabbit growth-plate

chondrocytes in primary culture and human chondrosarcoma cells

HCS-2/8 to CCN2 demonstrated not only a significant stimula-

tion of proliferation, differentiation, and enhanced synthesis of

hyaline cartilage matrix components such as type II collagen and

aggrecan, but also enhanced expression of hypertrophic cartilage

proteins such as type X collagen and alkaline phosphatase [11,13].

Since CCN2 is expressed by prehypertrophic and hypertrophic

chondrocytes, these findings indicate that CCN2 acts both in an

autocrine and in a paracrine manner to promote chondrocyte

proliferation and differentiation events. Thus, it may regulate

cartilage matrix synthesis and turnover leading to endochondral

ossification [4,11,15].

Here we provide experimental evidence in support of a

significant role of CCN2 in cartilage development and endochon-

dral ossification in vivo in transgenic mice over-expressing CCN2

driven by the cartilage-specific Col2a1 promoter. Most remarkably,

transgenic mice expressing high levels of transgenic CCN2 had

greater bone length as compared with their wt littermates. By 8

weeks, some of the tg littermates had greater body mass (,12%),

possibly caused by a better eating with tough skeleton. This

morphological phenotype reflects several enhanced cellular

activities observed in the transgenic cartilage: i) Chondrogenic

differentiation of limb-bud mesenchymal cells from CCN2

transgenic animals was greatly enhanced as compared with that

of their wild-type counterparts. ii) Histological analysis of tg

cartilage revealed increased type II collagen and aggrecan

deposition in the extracellular cartilage matrix, consistent with

our in vitro data showing that chondrocytes isolated from

transgenic animals had highly elevated levels of Col2a1 and

aggrecan mRNA shortly after isolation; iii) In long-term cultures,

CCN2 transgenic rib chondrocytes also expressed higher levels of

Col10a1, vegf and mmp9 mRNA than wt chondrocytes, indicating

accelerated maturation to hypertrophic chondrocytes. iv) PCNA

staining revealed a significant increase in chondrocyte prolifera-

tion in resting and growth-plate cartilage of transgenic animals;

and (v) CCN2 over-expression also caused slightly enhanced

apoptosis of hypertrophic chondrocytes.

One explanation for these effects of the over-expressed CCN2

may be the enhanced levels of IGF- I and IGF- II mRNA in the

transgenic chondrocytes. IGF-I and –II and IGF-binding proteins

are known to be most potent regulators of cartilage and bone

growth [31,32,33]. IGF-I and –II are well known to stimulate

proliferation and proteoglycan synthesis in cultured chondrocytes

[32,33,34]. Transgenic mice with an IGF-I gene under the control

of the metallothionein-I gene promoter weigh 1.3 times more than

their non-transgenic littermates [35]. Furthermore, IGF-II is

considered to be a fetal growth factor that promotes skeletal

growth in young rats [36,37]. Therefore, it is likely that a

substantial part, if not all, of the observed effects seen in the

transgenic cartilage were due to the additional IGF-I and -II

induced by the over-expressed CCN2.

These unexpected findings require revision of current views on

the molecular mechanism of growth stimulation by CCN2 and

may provide an explanation for our previous observations on the

stimulation of proteoglycan and DNA synthesis by CCN2 in HCS-

2/8 chondrosarcoma cells and rabbit chondrocytes [11,13].

Previous studies have shown an interaction between module 1 of

CCN proteins and IGF, suggesting a regulatory role of CCN

proteins on IGFs [38,39]. The data presented here, however,

indicate that the up-regulation of IGF-I and -II by CCN2 in

mouse chondrocyte cultures occurred at the transcriptional level.

To which extent the stimulation of bone growth in the transgenic

animals was caused by the up-regulated IGFs or by IGF-

independent actions of CCN2 remains to be elucidated.

Surprisingly, the enhanced IGF-I and IGF-II levels in the

CCN2 transgenic animals did not cause significant elongation of

cartilaginous tissues, for the cartilaginous epiphyses of long bones

were about the same size in transgenic animals and their wt

littermates. Rather, the increase in bone length was due to an

extended length of the diaphyseal bony part of the long bones. A

paracrine stimulation of periosteal bone cells by CCN2 overex-

pressed by adjacent chondrocytes, or by IGFs induced by CCN2,

is plausible in light of several in vitro studies showing stimulation of

osteoblast proliferation and differentiation and mineralization by

CCN2 [4,16,40]. A significant effect of over-expressed CCN2 on

bone growth was also evident from the enhanced thickness of

cortical bone and increased bone mineralization seen in transgenic

mice as compared with those found in their wild-type littermates.

The hypertrophic zone was shorter in the transgenic animals,

even though the cartilaginous epiphyses of the long bones were

about the same size as in the wild-type animals. There are possible

explanations for this phenomenon: 1) The enhanced chondrocyte

proliferation may have been compensated by the increase in

chondrocyte hypertrophy. 2) The level of VEGF, which induces

vascular invasion of hypertrophic cartilage, and that of MMP9,

which degrades cartilaginous matrices, were enhanced; in addition

apoptosis was slightly accelerated in transgenic hypertrophic

chondrocytes. On the other hand, VEGF- CCN2 complexes as

formed in vitro have been shown to be degraded by MMPs [41];

and this may be an internal autoregulatory mechanism controlling

CCN2 levels in the growth plate.

The results of our present gain-of-function experiment are for

the most part in accordance with the findings of a loss-of-function

study on CCN2-deficient mice [17], which develop skeletal

dysmorphisms such as distorted cartilage and bone elements as a

result of impaired chondrocyte proliferation and endochondral

ossification. In line with the shortened hypertrophic zone observed

in our CCN2 transgenic mice, the hypertrophic zone is extended

in CCN2-deficient mice. Interestingly, however, CCN2 deficient

mice do not show significant alterations in total bone size. Yet, this

is in accordance with the notion that the major enhancing effect

on bone growth in our CCN2 transgenic mice may have been

caused by enhanced levels of IGFs. Thus, although the study on

the CCN2-deficient mice confirmed the important role of CCN2

as a regulator of cartilage remodelling during endochondral

ossification, the absence of more severe phenotypic alterations in

these mice might have been due to redundant effects of other

members of the CCN family [17].
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In the CCN2 transgenic mouse lines presented here, the extent

of bone elongation, as well as the extent of enhancement of Col2a1

and aggrecan mRNA levels correlated with the extent of CCN2

over-expression in transgenic chondrocytes of both founder lines.

Besides high-expressing chondrocytes, also transgenic chondro-

cytes showing low levels of CCN2 expression comparable to those

of wt rib chondrocytes were seen in each litter, even when derived

from the same founder. Enhanced bone size as well as reduced

length of the hypertrophic zone was only observed in tg mice with

high levels of CCN2 expression. This was probably due to

unpredictable somatic inactivation of the transgene in some

embryos and reflects the limitation of this technique, which relies

on a random integration of the transgene into the genome. Our

previous CCN2-transgenic mice under the control of the Col9a1

promoter show dwarfism several months after birth and smaller

testes, but not so much difference in body length [42]. The

expression pattern and timing of Col9a1 expression, however,

differ to some extent from those of Col2a1, which may explain the

difference in phenotype.

Elucidation of the exact molecular mechanisms involved in

IGF-independent, CCN2-regulated chondrocyte responses is still

hampered by the fact that currently no specific cell-surface

signalling cellular receptor for CCN2 has been identified so far in

chondrogenic or osteogenic cells; instead, CCN2 seems to control

cellular events by complex interactions with numerous growth

factors such as IGFs, and perhaps through integrins and their

signalling pathways [2,43,44].

In conclusion, our study demonstrates that the use of the Col2a1

promoter for specific over-expression of CCN2 or other members

of the CCN family in chondrocytes may represent – together with

ccn2-deficient chondrocytes - a powerful tool to provide further

insight into the specific role of these growth factors in cartilage

metabolism and skeletal development.

Supporting Information

Figure S1 Accumulation of type II collagen and slightly
enhanced apoptosis in ccn2-overexpressing epiphyseal
cartilage. (A) Comparison of accumulation of type II collagen in

cartilage of ccn2-overexpressing and wt mice. Tibiae from P3

littermates were stained with anti-type II collagen antibody. The

color intensity was measured densitometrically. Four wt and 5 ccn2

tg littermates were analyzed. (B) TUNEL assay on tibiae from P3

littermates shows slightly enhanced apoptosis in the cartilage-bone

transition zone in the tg mice.

(TIF)

Figure S2 Gene expression analysis in pooled primary
chondrocytes from ccn2 tg and wt littermates. Expression

analysis of ccn2, Col2a1, and Aggrean mRNA of primary

chondrocytes from pooled ccn2 tg and wt littermates. Real time-

RCR analysis was done in duplicate, *: p,0.005. The experiments

were repeated 3 times and showed similar results.

(TIF)

Figure S3 Phosphorylation analysis of primary-cul-
tured ccn2 tg and wt chondrocytes pooled from different
transgenic line from figure 6A. Results of Western blot

analysis of IGF-1R and phospho-IGF-1R (upper photos) and those

of gene expression analysis (graphs at bottom) of the same cells as

used in Western blot analysis are shown. Real time-RCR analysis

was done in duplicate and repeated 3 times, *: p,0.005.

(TIF)

Figure S4 Change in gene expression level of ccn2, igf1,
and igf2 mRNA by the addition of CCN2 antibody (11H3)
to primary cultures of mouse rib chondrocytes from P3
littermates of ccn2 tg mice. Cells from these cultures were

seeded at 26105 cells in 3.5-cm dishes and cultured for 2 days until

the cells had reached to confluence. CCN2 antibody or control

IgG was added to the media. The cells were incubated for 24

hours, and total RNA was then extracted from them. Real-time

PCR demonstrated that CCN2 antibody repressed gene expres-

sion of ccn2, igf1, and igf2 mRNA in the ccn2-overexpresssing

chondrocytes. Real time-RCR analysis was done in duplicate, *:

p,0.005. The experiments were repeated for 3 times and showed

similar results.

(TIF)
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