9 research outputs found
The use of discrete choice experiments to inform health workforce policy: a systematic review.
BACKGROUND: Discrete choice experiments have become a popular study design to study the labour market preferences of health workers. Discrete choice experiments in health, however, have been criticised for lagging behind best practice and there are specific methodological considerations for those focused on job choices. We performed a systematic review of the application of discrete choice experiments to inform health workforce policy. METHODS: We searched for discrete choice experiments that examined the labour market preferences of health workers, including doctors, nurses, allied health professionals, mid-level and community health workers. We searched Medline, Embase, Global Health, other databases and grey literature repositories with no limits on date or language and contacted 44 experts. Features of choice task and experimental design, conduct and analysis of included studies were assessed against best practice. An assessment of validity was undertaken for all studies, with a comparison of results from those with low risk of bias and a similar objective and context. RESULTS: Twenty-seven studies were included, with over half set in low- and middle-income countries. There were more studies published in the last four years than the previous ten years. Doctors or medical students were the most studied cadre. Studies frequently pooled results from heterogeneous subgroups or extrapolated these results to the general population. Only one third of studies included an opt-out option, despite all health workers having the option to exit the labour market. Just five studies combined results with cost data to assess the cost effectiveness of various policy options. Comparison of results from similar studies broadly showed the importance of bonus payments and postgraduate training opportunities and the unpopularity of time commitments for the uptake of rural posts. CONCLUSIONS: This is the first systematic review of discrete choice experiments in human resources for health. We identified specific issues relating to this application of which practitioners should be aware to ensure robust results. In particular, there is a need for more defined target populations and increased synthesis with cost data. Research on a wider range of health workers and the generalisability of results would be welcome to better inform policy
Predicting Bison Migration out of Yellowstone National Park Using Bayesian Models
Long distance migrations by ungulate species often surpass the boundaries of preservation areas where conflicts with various publics lead to management actions that can threaten populations. We chose the partially migratory bison (Bison bison) population in Yellowstone National Park as an example of integrating science into management policies to better conserve migratory ungulates. Approximately 60% of these bison have been exposed to bovine brucellosis and thousands of migrants exiting the park boundary have been culled during the past two decades to reduce the risk of disease transmission to cattle. Data were assimilated using models representing competing hypotheses of bison migration during 1990–2009 in a hierarchal Bayesian framework. Migration differed at the scale of herds, but a single unifying logistic model was useful for predicting migrations by both herds. Migration beyond the northern park boundary was affected by herd size, accumulated snow water equivalent, and aboveground dried biomass. Migration beyond the western park boundary was less influenced by these predictors and process model performance suggested an important control on recent migrations was excluded. Simulations of migrations over the next decade suggest that allowing increased numbers of bison beyond park boundaries during severe climate conditions may be the only means of avoiding episodic, large-scale reductions to the Yellowstone bison population in the foreseeable future. This research is an example of how long distance migration dynamics can be incorporated into improved management policies
From polar night to midnight sun: photoperiod, seal predation, and the diel vertical migrations of polar cod (Boreogadus saida) under landfast ice in the Arctic Ocean
Climate-driven range shifts of the king penguin in a fragmented ecosystem
none10openCristofari, Robin; Liu, Xiaoming; Bonadonna, Francesco; Cherel, Yves; Pistorius, Pierre; Le Maho, Yvon; Raybaud, Virginie; Stenseth, Nils Christian; Le Bohec, Céline; Trucchi, EmilianoCristofari, Robin; Liu, Xiaoming; Bonadonna, Francesco; Cherel, Yves; Pistorius, Pierre; Le Maho, Yvon; Raybaud, Virginie; Stenseth, Nils Christian; Le Bohec, Céline; Trucchi, Emilian
Reproductive resilience to food shortage in a small heterothermic primate
The massive energetic costs entailed by reproduction in most mammalian females may increase the vulnerability of reproductive success to food shortage. Unexpected events of unfavorable climatic conditions are expected to rise in frequency and intensity as climate changes. The extent to which physiological flexibility allows organisms to maintain reproductive output constant despite energetic bottlenecks has been poorly investigated. In mammals, reproductive resilience is predicted to be maximal during early stages of reproduction, due to the moderate energetic costs of ovulation and gestation relative to lactation. We experimentally tested the consequences of chronic-moderate and short-acute food shortages on the reproductive output of a small seasonally breeding primate, the grey mouse lemur (Microcebus murinus) under thermo-neutral conditions. These two food treatments were respectively designed to simulate the energetic constraints imposed by a lean year (40% caloric restriction over eight months) or by a sudden, severe climatic event occurring shortly before reproduction (80% caloric restriction over a month). Grey mouse lemurs evolved under the harsh, unpredictable climate of the dry forest of Madagascar and should thus display great potential for physiological adjustments to energetic bottlenecks. We assessed the resilience of the early stages of reproduction (mating success, fertility, and gestation) to these contrasted food treatments, and on the later stages (lactation and offspring growth) in response to the chronic food shortage only. Food deprived mouse lemurs managed to maintain constant most reproductive parameters, including oestrus timing, estrogenization level at oestrus, mating success, litter size, and litter mass as well as their overall number of surviving offspring at weaning. However, offspring growth was delayed in food restricted mothers. These results suggest that heterothermic, fattening-prone mammals display important reproductive resilience to energetic bottlenecks. More generally, species living in variable and unpredictable habitats may have evolved a flexible reproductive physiology that helps buffer environmental fluctuations
