188 research outputs found

    LL_\infty-Algebras, the BV Formalism, and Classical Fields

    Get PDF
    We summarise some of our recent works on LL_\infty-algebras and quasi-groups with regard to higher principal bundles and their applications in twistor theory and gauge theory. In particular, after a lightning review of LL_\infty-algebras, we discuss their Maurer-Cartan theory and explain that any classical field theory admitting an action can be reformulated in this context with the help of the Batalin-Vilkovisky formalism. As examples, we explore higher Chern-Simons theory and Yang-Mills theory. We also explain how these ideas can be combined with those of twistor theory to formulate maximally superconformal gauge theories in four and six dimensions by means of LL_\infty-quasi-isomorphisms, and we propose a twistor space action.Comment: 19 pages, Contribution to Proceedings of LMS/EPSRC Durham Symposium Higher Structures in M-Theory, August 201

    'Schwinger Model' on the Fuzzy Sphere

    Full text link
    In this paper, we construct a model of spinor fields interacting with specific gauge fields on fuzzy sphere and analyze the chiral symmetry of this 'Schwinger model'. In constructing the theory of gauge fields interacting with spinors on fuzzy sphere, we take the approach that the Dirac operator DqD_q on q-deformed fuzzy sphere SqF2S_{qF}^2 is the gauged Dirac operator on fuzzy sphere. This introduces interaction between spinors and specific one parameter family of gauge fields. We also show how to express the field strength for this gauge field in terms of the Dirac operators DqD_q and DD alone. Using the path integral method, we have calculated the 2n2n-point functions of this model and show that, in general, they do not vanish, reflecting the chiral non-invariance of the partition function.Comment: Minor changes, typos corrected, 18 pages, to appear in Mod. Phys. Lett.

    Towards an M5-Brane Model II:Metric String Structures

    Get PDF
    In this paper, we develop the mathematical formulation of metric string structures. These play a crucial role in the formulation of certain six-dimensional superconformal field theories and we believe that they also underlie potential future formulations of the (2,0)-theory. We show that the connections on non-abelian gerbes usually introduced in the literature are problematic in that they are locally gauge equivalent to connections on abelian gerbes. Connections on string structures form an exception and we introduce the general concept of an adjusted Weil algebra leading to potentially interacting connections on higher principal bundles. Considering a special case, we derive the metric extension of string structures and the corresponding adjusted Weil algebra. The latter lead to connections that were previously constructed by hand in the context of gauged supergravities. We also explain how the Leibniz algebras induced by an embedding tensor in gauged supergravities fit into our picture.Comment: v2: 70 pages, presentation improved, typos fixed, published versio

    Gauge symmetries of strings in supertwistor space

    Get PDF
    Recently we have considered supertwistor reformulation of the D=4 N=1,2 superstring action that comprises Newman-Penrose dyad components and is classically equivalent to the Green-Schwarz one. It was shown that in the covariant kappa-symmetry gauge the supertwistor representation of the string action simplifies. Here we analyze its Hamiltonian formulation, classify the constraints on the phase-space variables, and find the covariant set of generators of the gauge symmetries. Quantum symmetries of the supertwistor representation of the string action are examined applying the world-sheet CFT technique. Considered are various generalizations of the model from the perspective of their possible relation to known twistor superstring models.Comment: 17 pages, LaTeX; v.2 minor changes in the text, references added, misprints correcte

    Drinfeld-Twisted Supersymmetry and Non-Anticommutative Superspace

    Full text link
    We extend the analysis of hep-th/0408069 on a Lorentz invariant interpretation of noncommutative spacetime to field theories on non-anticommutative superspace with half the supersymmetries broken. By defining a Drinfeld-twisted Hopf superalgebra, it is shown that one can restore twisted supersymmetry and therefore obtain a twisted version of the chiral rings along with certain Ward-Takahashi identities. Moreover, we argue that the representation content of theories on the deformed superspace is identical to that of their undeformed cousins and comment on the consequences of our analysis concerning non-renormalization theorems.Comment: 1+17 pages; typos fixed, minor correction

    Fuzzy Scalar Field Theory as a Multitrace Matrix Model

    Get PDF
    We develop an analytical approach to scalar field theory on the fuzzy sphere based on considering a perturbative expansion of the kinetic term. This expansion allows us to integrate out the angular degrees of freedom in the hermitian matrices encoding the scalar field. The remaining model depends only on the eigenvalues of the matrices and corresponds to a multitrace hermitian matrix model. Such a model can be solved by standard techniques as e.g. the saddle-point approximation. We evaluate the perturbative expansion up to second order and present the one-cut solution of the saddle-point approximation in the large N limit. We apply our approach to a model which has been proposed as an appropriate regularization of scalar field theory on the plane within the framework of fuzzy geometry.Comment: 1+25 pages, replaced with published version, minor improvement

    Higher Structures, Self-Dual Strings and 6d Superconformal Field Theories

    Full text link
    I summarize and discuss some recent results on formulating actions of six-dimensional superconformal field theories using the language of higher gauge theory. The latter guarantees mathematical consistency of our constructions and we review crucial aspects of this framework, such as LL_\infty-algebras and corresponding kinematical data given by higher connections. We then show that there is a mathematically consistent non-Abelian extension of the self-dual string equation which satisfies many physical expectations. Our construction favors a particular higher gauge group leading us to higher principal bundles known as string structures. Using these, we manage to formulate a six-dimensional action which shares many properties with the famous (2,0)(2,0)-theory but also still differs from it in some key points.Comment: 16 pages, Contribution to Proceedings of LMS/EPSRC Durham Symposium Higher Structures in M-Theory, August 201

    Symmetry, Gravity and Noncommutativity

    Get PDF
    We review some aspects of the implementation of spacetime symmetries in noncommutative field theories, emphasizing their origin in string theory and how they may be used to construct theories of gravitation. The geometry of canonical noncommutative gauge transformations is analysed in detail and it is shown how noncommutative Yang-Mills theory can be related to a gravity theory. The construction of twisted spacetime symmetries and their role in constructing a noncommutative extension of general relativity is described. We also analyse certain generic features of noncommutative gauge theories on D-branes in curved spaces, treating several explicit examples of superstring backgrounds.Comment: 52 pages; Invited review article to be published in Classical and Quantum Gravity; v2: references adde

    Vertex Operators for Closed Superstrings

    Get PDF
    We construct an iterative procedure to compute the vertex operators of the closed superstring in the covariant formalism given a solution of IIA/IIB supergravity. The manifest supersymmetry allows us to construct vertex operators for any generic background in presence of Ramond-Ramond (RR) fields. We extend the procedure to all massive states of open and closed superstrings and we identify two new nilpotent charges which are used to impose the gauge fixing on the physical states. We solve iteratively the equations of the vertex for linear x-dependent RR field strengths. This vertex plays a role in studying non-constant C-deformations of superspace. Finally, we construct an action for the free massless sector of closed strings, and we propose a form for the kinetic term for closed string field theory in the pure spinor formalism.Comment: TeX, harvmac, amssym.tex, 41 pp; references adde
    corecore