88 research outputs found

    Intranasal immunization with pneumococcal polysaccharide conjugate vaccines protects mice against invasive pneumococcal infections.

    Get PDF
    To access publisher full text version of this article. Please click on the hyperlink in Additional Links fieldHost defenses against Streptococcus pneumoniae depend largely on opsonophagocytosis mediated by antibodies and complement. Since pneumococcus is a respiratory pathogen, mucosal immune responses may play a significant role in the defense against pneumococcal infections. Thus, mucosal vaccination may be an alternative approach to current immunization strategies, but effective adjuvants are required. Protein antigens induce significant mucosal immunoglobulin A (IgA) and systemic IgG responses when administered intranasally (i. n.) with the glyceride-polysorbate based adjuvant RhinoVax (RV) both in experimental animals and humans. The immunogenicity and efficacy of pneumococcal polysaccharide conjugate vaccines (PNC) of serotypes 1 and 3 was studied in mice after i.n. immunization with RV. Antibodies were measured in serum (IgM, IgG, and IgA) and saliva (IgA) and compared to antibody titers induced by parenteral immunization. The PNCs induced significant systemic IgG and IgA antibodies after i.n. immunization only when given with RV and, for serotype 1, serum IgG titers were comparable to titers induced by subcutaneous immunization. In addition, i.n. immunization with PNC-1 in RV elicited detectable mucosal IgA. These results demonstrate that RV is a potent mucosal adjuvant for polysaccharides conjugated to proteins. A majority of the PNC-1-immunized mice were protected against both bacteremia and pneumonia after i.n. challenge with a lethal dose of serotype 1 pneumococci, and protection correlated significantly with the serum IgG titers. Similarly, the survival of mice immunized i.n. with PNC-3 in RV was significantly prolonged. These results indicate that mucosal vaccination with PNC and adjuvants may be an alternative strategy for prevention against pneumococcal infections

    Accumulation of Immature Langerhans Cells in Human Lymph Nodes Draining Chronically Inflamed Skin

    Get PDF
    The coordinated migration and maturation of dendritic cells (DCs) such as intraepithelial Langerhans cells (LCs) is considered critical for T cell priming in response to inflammation in the periphery. However, little is known about the role of inflammatory mediators for LC maturation and recruitment to lymph nodes in vivo. Here we show in human dermatopathic lymphadenitis (DL), which features an expanded population of LCs in one draining lymph node associated with inflammatory lesions in its tributary skin area, that the Langerin/CD207+ LCs constitute a predominant population of immature DCs, which express CD1a, and CD68, but not CD83, CD86, and DC–lysosomal-associated membrane protein (LAMP)/CD208. Using LC-type cells generated in vitro in the presence of transforming growth factor (TGF)-β1, we further found that tumor necrosis factor (TNF)-α, as a prototype proinflammatory factor, and a variety of inflammatory stimuli and bacterial products, increase Langerin expression and Langerin dependent Birbeck granules formation in cell which nevertheless lack costimulatory molecules, DC–LAMP/CD208 and potent T cell stimulatory activity but express CCR7 and respond to the lymph node homing chemokines CCL19 and CCL21. This indicates that LC migration and maturation can be independently regulated events. We suggest that during DL, inflammatory stimuli in the skin increase the migration of LCs to the lymph node but without associated maturation. Immature LCs might regulate immune responses during chronic inflammation

    Competition for FcRn-mediated transport gives rise to short half-life of human IgG3 and offers therapeutic potential

    Get PDF
    Human IgG3 displays the strongest effector functions of all IgG subclasses but has a short half-life for unresolved reasons. Here we show that IgG3 binds to IgG-salvage receptor (FcRn), but that FcRn-mediated transport and rescue of IgG3 is inhibited in the presence of IgG1 due to intracellular competition between IgG1 and IgG3. We reveal that this occurs because of a single amino acid difference at position 435, where IgG3 has an arginine instead of the histidine found in all other IgG subclasses. While the presence of R435 in IgG increases binding to FcRn at neutral pH, it decreases binding at acidic pH, affecting the rescue efficiency—but only in the presence of H435–IgG. Importantly, we show that in humans the half-life of the H435-containing IgG3 allotype is comparable to IgG1. H435–IgG3 also gave enhanced protection against a pneumococcal challenge in mice, demonstrating H435–IgG3 to be a candidate for monoclonal antibody therapies

    Binding of Human Milk to Pathogen Receptor DC-SIGN Varies with Bile Salt-Stimulated Lipase (BSSL) Gene Polymorphism

    Get PDF
    OBJECTIVE: Dendritic cells bind an array of antigens and DC-SIGN has been postulated to act as a receptor for mucosal pathogen transmission. Bile salt-stimulated lipase (BSSL) from human milk potently binds DC-SIGN and blocks DC-SIGN mediated trans-infection of CD4(+) T-lymphocytes with HIV-1. Objective was to study variation in DC-SIGN binding properties and the relation between DC-SIGN binding capacity of milk and BSSL gene polymorphisms. STUDY DESIGN: ELISA and PCR were used to study DC-SIGN binding properties and BSSL exon 11 size variation for human milk derived from 269 different mothers distributed over 4 geographical regions. RESULTS: DC-SIGN binding properties were highly variable for milks derived from different mothers and between samplings from different geographical regions. Differences in DC-SIGN binding were correlated with a genetic polymorphism in BSSL which is related to the number of 11 amino acid repeats at the C-terminus of the protein. CONCLUSION: The observed variation in DC-SIGN binding properties among milk samples may have implications for the risk of mucosal transmission of pathogens during breastfeeding

    Tumour-associated carbohydrate antigens in breast cancer

    Get PDF
    Glycosylation changes that occur in cancer often lead to the expression of tumour-associated carbohydrate antigens. In breast cancer, these antigens are usually associated with a poor prognosis and a reduced overall survival. Cellular models have shown the implication of these antigens in cell adhesion, migration, proliferation and tumour growth. The present review summarizes our current knowledge of glycosylation changes (structures, biosynthesis and occurrence) in breast cancer cell lines and primary tumours, and the consequences on disease progression and aggressiveness. The therapeutic strategies attempted to target tumour-associated carbohydrate antigens in breast cancer are also discussed

    Human Breast Milk and Antiretrovirals Dramatically Reduce Oral HIV-1 Transmission in BLT Humanized Mice

    Get PDF
    Currently, over 15% of new HIV infections occur in children. Breastfeeding is a major contributor to HIV infections in infants. This represents a major paradox in the field because in vitro, breast milk has been shown to have a strong inhibitory effect on HIV infectivity. However, this inhibitory effect has never been demonstrated in vivo. Here, we address this important paradox using the first humanized mouse model of oral HIV transmission. We established that reconstitution of the oral cavity and upper gastrointestinal (GI) tract of humanized bone marrow/liver/thymus (BLT) mice with human leukocytes, including the human cell types important for mucosal HIV transmission (i.e. dendritic cells, macrophages and CD4+ T cells), renders them susceptible to oral transmission of cell-free and cell-associated HIV. Oral transmission of HIV resulted in systemic infection of lymphoid and non-lymphoid tissues that is characterized by the presence of HIV RNA in plasma and a gradual decline of CD4+ T cells in peripheral blood. Consistent with infection of the oral cavity, we observed virus shedding into saliva. We then evaluated the role of human breast milk on oral HIV transmission. Our in vivo results demonstrate that breast milk has a strong inhibitory effect on oral transmission of both cell-free and cell-associated HIV. Finally, we evaluated the effect of antiretrovirals on oral transmission of HIV. Our results show that systemic antiretrovirals administered prior to exposure can efficiently prevent oral HIV transmission in BLT mice

    CD10 is a marker for cycling cells with propensity to apoptosis in childhood ALL

    Get PDF
    CD10 constitutes a favourable prognostic marker for childhood acute lymphoblastic leukaemia. Since correlations between CD10, cell cycle and apoptotic abilities were demonstrated in various cell types, we investigated whether differences existed in the cycling/apoptotic abilities of CD10-positive and CD10-negative B acute lymphoblastic leukaemia cells. Twenty-eight cases of childhood acute lymphoblastic leukaemia (mean age of 6.8 years) were subdivided into two groups according to high (17 cases, 93.2±4.5%, MRFI 211±82 CD10-positive cells) or low (11 cases, 11.5±6.2%, MRFI 10±7 CD10-negative cells) expression of CD10. CD10-positive acute lymphoblastic leukaemia cells were cycling cells with elevated c-myc levels and propensity to apoptosis, whereas CD10-negative acute lymphoblastic leukaemia cells had lower cycling capacities and c-myc levels, and were resistant to apoptosis in vitro. A close correlation between all these properties was demonstrated by the observations that the few CD10-positive cells found in the CD10-negative acute lymphoblastic leukaemia group displayed elevated c-myc and cycling capacities and were apoptosis prone. Moreover, exposure of CD10-positive acute lymphoblastic leukaemia B cells to a peptide nucleic acid anti-gene specific for the second exon of c-myc caused inhibition of c-myc expression and reduced cell cycling and apoptotic abilities as well as decreased CD10 expression
    corecore