9 research outputs found

    The pivotal role of angiogenesis in a multi-scale modeling of tumor growth exhibiting the avascular and vascular phases

    Get PDF
    The final publication is available at Elsevier via https://dx.doi.org/10.1016/j.mvr.2018.05.001 © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/The mechanisms involved in tumor growth mainly occur at the microenvironment, where the interactions between the intracellular, intercellular and extracellular scales mediate the dynamics of tumor. In this work, we present a multi-scale model of solid tumor dynamics to simulate the avascular and vascular growth as well as tumor-induced angiogenesis. The extracellular and intercellular scales are modeled using partial differential equations and cellular Potts model, respectively. Also, few biochemical and biophysical rules control the dynamics of intracellular level. On the other hand, the growth of melanoma tumors is modeled in an animal in-vivo study to evaluate the simulation. The simulation shows that the model successfully reproduces a completed image of processes involved in tumor growth such as avascular and vascular growth as well as angiogenesis. The model incorporates the phenotypes of cancerous cells including proliferating, quiescent and necrotic cells, as well as endothelial cells during angiogenesis. The results clearly demonstrate the pivotal effect of angiogenesis on the progression of cancerous cells. Also, the model exhibits important events in tumor-induced angiogenesis like anastomosis. Moreover, the computational trend of tumor growth closely follows the observations in the experimental study

    Asynchronous Decoding of LDPC Codes over BEC

    Get PDF
    LDPC codes are typically decoded by running a synchronous message passing algorithm over the corresponding bipartite factor graph (made of variable and check nodes). More specifically, each synchronous round consists of 1) updating all variable nodes based on the information received from the check nodes in the previous round, and then 2) updating all the check nodes based on the information sent from variable nodes in the current round. However, in many applications, ranging from message passing in neural networks to hardware implementation of LDPC codes, assuming that all messages are sent and received at the same time is far from realistic. In this paper, we investigate the effect of asynchronous message passing on the decoding of LDPC codes over a BEC channel. We effectively assume that there is a random delay assigned to each edge of the factor graph that models the random propagation delay of a message along the edge. As a result, the output messages of a check/variable node are also asynchronously updated upon arrival of a new message in its input. We show, for the first time, that the asymptotic performance of the asynchronous message passing is fully characterized by a fixed point integral equation that takes into account both the temporal and the spatial feature of the factor graph. Our theoretical result is reminiscent of the fixed point equation in traditional BP decoding. Surprisingly, our simulation results show that asynchronous scheduling outperforms tremendously the traditional BP in the finite block length regime by avoiding standard trapping sets

    Geochemistry and tectonic setting of Paleogene volcanic rocks of Rudbar in the south of Guilan, northern Iran: Implications for adakitic volcanism

    Get PDF
    IntroductionVolcanic rocks with adakitic nature, are outcropped, in the south of Rudbar city as a part of the Alborz magmatic zone and the northern part of the Alborz zone. Most of the rock units in this area are volcanic and pyroclastic belonging to the Tertiary age and specifically Middle Eocene.For this study, we present new data to understand the origin and tectonic setting of the adakitic early Cenozoic magmatism in the southern part of the western Alborz orogenic belt.Regional GeologyBased on the 1:100,000 Guilan geological map (Nazari and Salamati, 1998), the predominant geological units of the region include the Paleozoic, Mesozoic, and Cenozoic stratigraphic units. The volcanic activity resulting from the subduction of an oceanic crust beneath the active continental margin of Alborz began in Paleocene and its peak is attributed to the Lutsin period (Nazari and Salamati, 1998).Materials and methods Following microscopic studies, 11 samples were analyzed at Actlabs Lab in Canada by ICP-MS method. IGPET and GCDKIT software were applied to draw diagrams and interpret the data.Petrography and Whole rocks chemistry The studied lavas consist mainly of dacite to trachy-dacite, rhyodacite, and rarely rhyolite. Abundant plagioclase as phenocrysts and microlites and rare amphibole, biotite, and quartz with hyaloporphyritic, microlithic porphyry to felsitic porphyry and microfelsitic textures are the dominant petrographic features of these rocks. Geochemically, they are characterized by mean value of 61.87 wt%< SiO2<66.54, 1.1 wt%<MgO<2.8 wt%,10 ppm<Y<14 ppm, 1.4 ppm<Yb<1.7 ppm, 450 ppm<Sr<1887 ppm as well as the average amounts of Sr/Y: 103.8, 10.5<(La/Yb)N<14.09 and 5.1<Yb/Lu<6.5. Thus, the overall geochemical data point to HAS characteristics of the rocks under study. On normalized spider diagram to chondrite, MORB, and primitive mantle, all rocks demonstrate subparallel trend, linear and homogeneous REE profiles with LILE and LREE enrichment together Ta, Nb, and Ti negative anomalies. As the tectonic diagrams display, all the studied samples are plotted in an arc volcanic granite field formed in a subduction environment in an active continental margin. Moreover, all the obtained geochemical data point to a high silica adakitic magma as the parent magma.DiscussionThe studied area lies in Alborz Mountain, which owing to the collision of two Eurasian and Arabian plates, where a Neo-Tethyan oceanic lithosphere (Southern Caspian Sea Ocean or SCO)” is subducted beneath the Central Iranian continental lithosphere (Salavati et al, 2013), is an active deformation zone.The studied rocks formed in arc and subduction zones setting. Adakitic rocks in the arc setting can be produced by partial melting of a hot and young subducted oceanic slab and subduction of a very young oceanic crust (<5Ma) at depths of about 25 to 90 km is required to produce adakitic magma in the arc setting (Thorkelsona and Breitsprecher, 2005).In the north of the investigated area and south part of the Caspian Sea, an Alpian oceanic belonging late Cretaceous age was reported and named “Southern Caspian Sea Ocean (Salavati et al., 2013), which was subducted toward the south. Adakitic activity and not-adakitic magmatism continued to migrate toward the trench supporting a slab window model.The proposed tectonomagmatic model "Ridge-Trench", indicates that the studied lavas were generated in the Neothetyan supra-subduction zone.Based on this model, in the south of Guilan Province, SCO oceanic crust (and likely its ridge) has subducted towards the south the first because of a pressure change that might be caused by the extension and thinning of the overlying crust. A slab window was formed therefore in the source region, and partial melting occurred by asthenospheric upwelling. It looks like the adakitic rocks imply a deep source with a low magma source melting degree.ConclusionThe overall petrological and geochemical features of the studied lavas gave rise to the following conclusions:A new group of extrusive rocks, with remarkable geochemical characteristics of adakitic rocks, is outcropped in the south of Guilan ProvinceThese rocks are characterized by HFSE and HREE depletion relative to LILE and LREE and negative Nb, Ta, and Ti anomalies, suggesting the parent magmas were affected by subduction-related geochemical processes.On tectonic diagrams, the studied adakitic rocks plotted on an Active Continental Margin setting and they show HAS characteristics produced by 5% to 10% partial melting of an amphibolite garnet source from a hot and young Cenozoic slab subduction.All the geological and geochemical data indicate that the early Cenozoic adakitic magmas in the south of Guilan Province were generated in an extensional tectonic setting (Slab window setting) when the active spreading center of the Neo-Tethys oceanic (Southern Caspian Sea Ocean) subducted toward the south and produced a slab window. According to the proposed model, the active spreading center of the Neo-Tethys oceanic crust (Southern Caspian Sea Ocean) subducted toward the south and produced a slab window in the subducted oceanic lithosphere.AcknowledgmentsWe appreciate the Office of Graduate Studies of Islamic Azad University, Lahijan Branch

    Thermally Sprayed High Temperature Sandwich Structures: Physical Properties and Mechanical Performance

    No full text
    Metallic foam core sandwich structures have been of particular interest for engineering applications in recent decades due to their unique physical and mechanical properties. One of the potential applications of open pore metallic foam core sandwich structures is in heat exchangers. An investigation of sandwich structures fabricated from materials suitable for application at high temperatures and in corrosive environments was undertaken in this project. A novel method for fabrication of metallic foam core sandwich structures is thermal spray deposition of the faces on the prepared surfaces of the metallic foam substrate. The objective of the current study was to optimize the twin wire arc spray process parameters for the deposition of alloy 625 faces with controllable porosity content on the nickel foam substrate, and to characterize the physical and mechanical properties of the sandwich structure. The experimental investigations consisted of microstructural evaluation of the skin material and the foam substrate, investigation of the effect of alloying on the mechanical and thermal properties of the nickel foam, optimization of the grit-blasting and arc spray processes, observation of mechanical properties of the alloy 625 deposit by tensile testing and evaluation of the overall mechanical properties of the sandwich structure under flexural loading condition. The optimization of arc spraying process parameters allowed deposition of alloy 625 faces with a porosity of less than 4% for heat exchanger applications. Modification of the arc spraying process by co-deposition of polyester powder enabled 20% porosity to be obtained in the deposited faces for heat shield applications with film cooling. The effects of nickel foam alloying and heat treatment on the flexural rigidity of the sandwich structures were investigated and compared with as-received foam and as-fabricated sandwich structures. Available analytical models were employed to describe the effect of constituentsâ mechanical properties on the overall mechanical performance of the sandwich structures. Finite element modeling using ANSYS Structural was used to simulate the behaviour of the sandwich structures in four-point bending. The analytical and simulation results were compared with the experimental results obtained from the flexural tests.Ph.D

    Quantifying [¹⁸F]fluorodeoxyglucose uptake in the arterial wall: the effects of dual time-point imaging and partial volume effect correction

    No full text
    The human arterial wall is smaller than the spatial resolution of current positron emission tomographs. Therefore, partial volume effects should be considered when quantifying arterial wall (18)F-FDG uptake. We evaluated the impact of a novel method for partial volume effect (PVE) correction with contrast-enhanced CT (CECT) assistance on quantification of arterial wall (18)F-FDG uptake at different imaging time-points
    corecore