285 research outputs found

    Revolutionizing electric utilities with AI

    Get PDF
    The power sector is digitizing, enabling the use of advanced computing tools such as Artificial Intelligence (AI) to achieve operational efficiency and optimality. This technological innovation is playing a significant role in the global energy transition to meet climate goals. AI is being embraced by developed countries as a critical tool for reducing energy waste, lowering costs, and accelerating the adoption of clean, renewable energy sources in power grids worldwide, as well as improving power system operation, maintenance, control, and planning. AI applications have revolutionized electric utility operations such as customer engagement, managing electrification of transportation and smart neighborhoods, electrical grid digitization, and electrical network asset digitization

    Revolutionizing electric utilities with AI

    Get PDF
    The power sector is digitizing, enabling the use of advanced computing tools such as Artificial Intelligence (AI) to achieve operational efficiency and optimality. This technological innovation is playing a significant role in the global energy transition to meet climate goals. AI is being embraced by developed countries as a critical tool for reducing energy waste, lowering costs, and accelerating the adoption of clean, renewable energy sources in power grids worldwide, as well as improving power system operation, maintenance, control, and planning. AI applications have revolutionized electric utility operations such as customer engagement, managing electrification of transportation and smart neighborhoods, electrical grid digitization, and electrical network asset digitization

    Cross-VM Network Channel Attacks and Countermeasures within Cloud Computing Environments

    Get PDF
    Cloud providers attempt to maintain the highest levels of isolation between Virtual Machines (VMs) and inter-user processes to keep co-located VMs and processes separate. This logical isolation creates an internal virtual network to separate VMs co-residing within a shared physical network. However, as co-residing VMs share their underlying VMM (Virtual Machine Monitor), virtual network, and hardware are susceptible to cross VM attacks. It is possible for a malicious VM to potentially access or control other VMs through network connections, shared memory, other shared resources, or by gaining the privilege level of its non-root machine. This research presents a two novel zero-day cross-VM network channel attacks. In the first attack, a malicious VM can redirect the network traffic of target VMs to a specific destination by impersonating the Virtual Network Interface Controller (VNIC). The malicious VM can extract the decrypted information from target VMs by using open source decryption tools such as Aircrack. The second contribution of this research is a privilege escalation attack in a cross VM cloud environment with Xen hypervisor. An adversary having limited privileges rights may execute Return-Oriented Programming (ROP), establish a connection with the root domain by exploiting the network channel, and acquiring the tool stack (root domain) which it is not authorized to access directly. Countermeasures against this attacks are also presente

    Interactions between heavy metals and glucosinolates as defense mechanisms in Thlaspi caerulescens

    Get PDF
    Hyperaccumulator plant species grow in metalliferous soils and accumulate exceedingly high concentrations of metals. They are increasingly studied because of their potential for cleaning up land contaminated with heavy metals, but another aspect of study relates to the reason for hyperaccumulation. The most accepted hypothesis over the last few decades is the ‘elemental defence’ hypothesis, which states that high levels of metals defend the plant against herbivores. Whilst some of the literature is contradictory, some is supportive. An added complication is that many hyperaccumulators belong to the Brassicaceae and produce glucosinolates as organic defences against herbivory. The question to be answered is whether metals or glucosinolates act as the primary defence in these plants and the most recent suggestion is the ‘joint effects’ hypothesis, which states that both classes of chemical work together to benefit the plant and protect it from herbivores. This study investigates these hypotheses and utilized three experimental systems. The hyperaccumulator studied was Thlaspi caerulescens (Gange ecotype) which hyperaccumulates zinc. Plants were grown in a series of glasshouse experiments at a range of soil zinc amendments. There was a positive relationship between soil and foliar zinc; optimum growth occurred at 2000 mg Zn kg-1 soil and this equated to approximately 8000 mg Zn kg-1 shoot, although plants took up as much as 14000 mg Zn kg-1 shoot tissue at higher levels of soil amendment. The herbivore systems studied were generalist thrips (Franklinella occidentalis) and the specialist cabbage whitefly (Aleyrodes proletella). In addition, artificial damage caused by clipping served as a positive control. Four aromatic glucosinolates were extracted from T. caerulescens and two were identified as benzyl and p-OH-benzyl. Glucosinolates were synthesized 32 hours after damage occurred and reached a maximum concentration after 48 hours. Generally, lower concentrations of glucosinolates were observed in plants with higher foliar Zn concentrations and vice versa. However, when plants were subjected to a sustained and heavy herbivore attack, as was the case when thrips infested the plants, glucosinolate production occurred irrespective of foliar Zn concentration. This observation supports the ‘joint effects’ hypothesis, which states that both defences work in tandem and enhance overall defence. Nitrogen was an important component that directed herbivore response. Thrip feeding damage was negatively correlated with foliar nitrogen whilst cabbage whitefly (CWF) benefitted from higher N. Nitrogen was positively correlated with glucosinolate concentrations and glucosinolate content negatively affected the generalist thrips but not the specialist CWF. Data were analysed by accumulated general linear regression and the explanatory model for thrip feeding was C/N ratio + GS + Zn whilst the explanatory model for CWFs was C/N ratio + Zn. Use of the specialist feeder (CWF) allowed for study of the effects of zinc without glucosinolates confounding the results since the CWF was unaffected by foliar glucosinolates. Zinc acted as a defence against CWF but only at high concentrations. The data taken together show that zinc acts as a defence against herbivores that are unaffected by glucosinolates, but only at high concentrations. Zinc also defends the plant against generalist thrips, but glucosinolates are more influential in this case. This might be because of the severe and sustained damage that these plants suffered and systemic effects (i.e. higher concentrations of glucosinolates in undamaged leaves relative to attacked leaves) suggests flexibility in the Zn-glucosinolate relationship. The overall conclusion is in support of the joint effects hypothesis

    Interactions between heavy metals and glucosinolates as defense mechanisms in Thlaspi caerulescens

    Get PDF
    Hyperaccumulator plant species grow in metalliferous soils and accumulate exceedingly high concentrations of metals. They are increasingly studied because of their potential for cleaning up land contaminated with heavy metals, but another aspect of study relates to the reason for hyperaccumulation. The most accepted hypothesis over the last few decades is the ‘elemental defence’ hypothesis, which states that high levels of metals defend the plant against herbivores. Whilst some of the literature is contradictory, some is supportive. An added complication is that many hyperaccumulators belong to the Brassicaceae and produce glucosinolates as organic defences against herbivory. The question to be answered is whether metals or glucosinolates act as the primary defence in these plants and the most recent suggestion is the ‘joint effects’ hypothesis, which states that both classes of chemical work together to benefit the plant and protect it from herbivores. This study investigates these hypotheses and utilized three experimental systems. The hyperaccumulator studied was Thlaspi caerulescens (Gange ecotype) which hyperaccumulates zinc. Plants were grown in a series of glasshouse experiments at a range of soil zinc amendments. There was a positive relationship between soil and foliar zinc; optimum growth occurred at 2000 mg Zn kg-1 soil and this equated to approximately 8000 mg Zn kg-1 shoot, although plants took up as much as 14000 mg Zn kg-1 shoot tissue at higher levels of soil amendment. The herbivore systems studied were generalist thrips (Franklinella occidentalis) and the specialist cabbage whitefly (Aleyrodes proletella). In addition, artificial damage caused by clipping served as a positive control. Four aromatic glucosinolates were extracted from T. caerulescens and two were identified as benzyl and p-OH-benzyl. Glucosinolates were synthesized 32 hours after damage occurred and reached a maximum concentration after 48 hours. Generally, lower concentrations of glucosinolates were observed in plants with higher foliar Zn concentrations and vice versa. However, when plants were subjected to a sustained and heavy herbivore attack, as was the case when thrips infested the plants, glucosinolate production occurred irrespective of foliar Zn concentration. This observation supports the ‘joint effects’ hypothesis, which states that both defences work in tandem and enhance overall defence. Nitrogen was an important component that directed herbivore response. Thrip feeding damage was negatively correlated with foliar nitrogen whilst cabbage whitefly (CWF) benefitted from higher N. Nitrogen was positively correlated with glucosinolate concentrations and glucosinolate content negatively affected the generalist thrips but not the specialist CWF. Data were analysed by accumulated general linear regression and the explanatory model for thrip feeding was C/N ratio + GS + Zn whilst the explanatory model for CWFs was C/N ratio + Zn. Use of the specialist feeder (CWF) allowed for study of the effects of zinc without glucosinolates confounding the results since the CWF was unaffected by foliar glucosinolates. Zinc acted as a defence against CWF but only at high concentrations. The data taken together show that zinc acts as a defence against herbivores that are unaffected by glucosinolates, but only at high concentrations. Zinc also defends the plant against generalist thrips, but glucosinolates are more influential in this case. This might be because of the severe and sustained damage that these plants suffered and systemic effects (i.e. higher concentrations of glucosinolates in undamaged leaves relative to attacked leaves) suggests flexibility in the Zn-glucosinolate relationship. The overall conclusion is in support of the joint effects hypothesis

    The Complex Management of Mechanical Prosthetic Valve Thrombosis

    Get PDF
    Mechanical prosthetic valve thrombosis (PVT) is a serious condition that is associated with various life-threatening complications. The utilization of multimodality imaging techniques is critical in identifying this etiology. Its management is complex and often requires repeat surgical valve replacements. Our report describes the case of a 48-year-old female who presented with mechanical mitral valve thrombosis in the setting of subtherapeutic anticoagulation. Due to her complex surgical history, nonsurgical therapeutic options were initially pursued for management. Through shared decision-making and after exhaustion of other alternatives, she was maintained on optimized medical therapy and was scheduled for repeat elective surgery. After compliance with medical therapy and close monitoring, she improved significantly, and her underlying pathology completely resolved, eliminating the need for surgery. This report indicates that the management of mechanical prosthetic valve thrombosis should be individualized and emphasizes the importance of involving a multidisciplinary team of medical and surgical professionals to achieve the best clinical outcomes

    Model predictive control of consensus-based energy management system for DC microgrid

    Get PDF
    The increasing deployment and exploitation of distributed renewable energy source (DRES) units and battery energy storage systems (BESS) in DC microgrids lead to a promising research field currently. Individual DRES and BESS controllers can operate as grid-forming (GFM) or grid-feeding (GFE) units independently, depending on the microgrid operational requirements. In standalone mode, at least one controller should operate as a GFM unit. In grid-connected mode, all the controllers may operate as GFE units. This article proposes a consensus-based energy management system based upon Model Predictive Control (MPC) for DRES and BESS individual controllers to operate in both configurations (GFM or GFE). Energy management system determines the mode of power flow based on the amount of generated power, load power, solar irradiance, wind speed, rated power of every DG, and state of charge (SOC) of BESS. Based on selection of power flow mode, the role of DRES and BESS individual controllers to operate as GFM or GFE units, is decided. MPC hybrid cost function with auto-tuning weighing factors will enable DRES and BESS converters to switch between GFM and GFE. In this paper, a single hybrid cost function has been proposed for both GFM and GFE. The performance of the proposed energy management system has been validated on an EU low voltage benchmark DC microgrid by MATLAB/SIMULINK simulation and also compared with Proportional Integral (PI) & Sliding Mode Control (SMC) technique. It has been noted that as compared to PI & SMC, MPC technique exhibits settling time of less than 1”sec and 5% overshoot

    The dynamics of leader technical competence, subordinate learning, and innovative work behaviors in high-tech, knowledge-based industry

    Get PDF
    This study tests a conceptual model for understanding the relationship between subordinates’ ‘learning work behaviour’ and ‘innovative work behaviour’, with the moderating role of their leaders’ self-reported as well as subordinates’ rated ‘leader technical competence’. The study was conducted in the context of a high-tech, knowledge-based telecommunications industry. Based on the evaluation of job description, leaders/managers with responsibilities of not only managing internal and external stakeholders but also capable to lead engineers to resolve any technical issue multiple-source data were collected from the identified leaders and their respective subordinates working with telecommunication operator (nÂŒ179). This study proposed a three-way interaction moderation model between the independent variable (subordinate learning work behaviour) and the moderator variables (that is, the self-assessed leaders’ ‘technical competence’ and subordinates’ rated ‘leader’ technical competence’) to predict the subordinates’ ‘innovative work behaviour’. Our results demonstrate that that subordinate learning work behaviour had the strongest positive relationship with subordinate innovative work behaviour when both the leader self-assessment of technical competence and the subordinates rated leader’s technical competence were high. This study fills an important gap in leadership literature by focussing on the technical competence of leaders which has received little attention from leadership research in knowledge-based industries
    • 

    corecore