8 research outputs found

    Investigation on standing wave thermoacoustic generator using DeltaEC

    Get PDF
    There is currently an urgent demand to reuse waste heat from industrial processes with approaches that require minimal investment and low cost of operation. Thermoacoustic generator (TAG) is a device that converts heat energy into useful work through the use of acoustic wave, porous media (honeycomb ceramic celcor) and heat exchangers that are all enclosed in a custom-defined resonator. This paper reports the basic design of thermoacoustic generator that is tested using a design software known as a Design Environmental for Low-amplitude Thermoacoustic Energy Conversion (DeltaEC). Many studies have highlighted the relationships between the geometry of the stack and the performance of the device. In this study, attention is given on the impact of the length of stack which was found to be the best at a length of 0.6 m when the frequency of the flow is at 127.4 Hz. Performance indicators like the acoustic power and the temperature difference across the stack have been used to analyse the results. The result shows that the highest acoustic power can be achieved when the generator that work with air at an atmospheric pressure is designed with a resonator of 2.14 m long and a stack with a length of 0.6 m. The maximum value for acoustic power is predicted to be as much as 24.01 kW

    The effect of porous materials on temperature drop in a standing wave thermoacoustic cooler

    Get PDF
    Thermoacoustics is a principle of sciences that offers an alternative solution for cooling system with a technology that is green and sustainable. The thermoacoustic energy conversion takes place mostly within the area of the porous structure that forms the core of the system. In this study, the effect of changing the material of the porous structure on the performance of the thermoacoustic refrigerating system is reported. Experiments were performed under standing wave environment with two different resonance frequencies with air at atmospheric pressure. The porous stack was chosen to be with three different materials of polycarbonate, ceramic and stainless steel. The results show that the use of ceramic celcor as the porous material provides the biggest temperature difference which means that thermoacoustic performance is better. The performance is even better when the system is working with higher resonance frequency. At atmospheric pressure condition with air as working medium, the thermoacoustic cooler with ceramic porous material is capable of producing temperature difference of 39.16C when operating at a frequency of 202.1 Hz

    Cell Arrangement of Lithium-ion Battery Pack for Improvement in Cooling Performance of Air-Cooled Battery Thermal Management System

    Get PDF
    āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āđ„āļ”āđ‰āļ—āļģāļāļēāļĢāļĻāļķāļāļĐāļēāđ€āļŠāļīāļ‡āļ•āļąāļ§āđ€āļĨāļ‚āļ‚āļ­āļ‡āļĢāļ°āļšāļšāļˆāļąāļ”āļāļēāļĢāļ„āļ§āļēāļĄāļĢāđ‰āļ­āļ™āļ‚āļ­āļ‡āļŠāļļāļ”āđāļšāļ•āđ€āļ•āļ­āļĢāļĩāđˆāļ”āđ‰āļ§āļĒāļ­āļēāļāļēāļĻ āđ€āļ™āļ·āđˆāļ­āļ‡āļˆāļēāļāļ•āđ‰āļ™āļ—āļļāļ™āļāļēāļĢāļœāļĨāļīāļ•āļ—āļĩāđˆāļ•āđˆāļģ, āđ‚āļ„āļĢāļ‡āļŠāļĢāđ‰āļēāļ‡āļāļēāļĢāļˆāļąāļ”āđ€āļĢāļĩāļĒāļ‡āļ—āļĩāđˆāđ„āļĄāđˆāļ‹āļąāļšāļ‹āđ‰āļ­āļ™ āđāļĨāļ°āļ„āļ§āļēāļĄāđ€āļŠāļ–āļĩāļĒāļĢāļ āļēāļžāļ‚āļ­āļ‡āļĢāļ°āļšāļšāļ—āļĩāđˆāļŠāļđāļ‡ āđ‚āļ”āļĒāļ—āļģāļāļēāļĢāļĻāļķāļāļĐāļēāļŠāļļāļ”āđāļšāļ•āđ€āļ•āļ­āļĢāļĩāđˆāļĨāļīāđ€āļ˜āļĩāļĒāļĄāđ„āļ­āļ­āļ­āļ™āļĢāļļāđˆāļ™ 1860B āļˆāļģāļ™āļ§āļ™ 40 āđ€āļ‹āļĨāļĨāđŒ āļ—āļĩāđˆāļĄāļĩāđ‚āļ„āļĢāļ‡āļŠāļĢāđ‰āļēāļ‡āļāļēāļĢāļˆāļąāļ”āđ€āļĢāļĩāļĒāļ‡āđ€āļ‹āļĨāļĨāđŒāļ—āļĩāđˆāđāļ•āļāļ•āđˆāļēāļ‡āļāļąāļ™ āđ„āļ”āđ‰āđāļāđˆ āđāļ™āļ§āđ€āļ”āļĩāļĒāļ§āļāļąāļ™, āđāļ™āļ§āđ€āļĒāļ·āđ‰āļ­āļ‡ āđāļĨāļ°āđāļ™āļ§āļŠāļĨāļąāļš āđ€āļžāļ·āđˆāļ­āđ€āļ›āļĢāļĩāļĒāļšāđ€āļ—āļĩāļĒāļšāļŠāļĄāļĢāļĢāļ–āļ™āļ°āļāļēāļĢāļĢāļ°āļšāļēāļĒāļ„āļ§āļēāļĄāļĢāđ‰āļ­āļ™āļ‚āļ­āļ‡āđāļ•āđˆāļĨāļ°āļĢāļđāļ›āđāļšāļš āļ™āļ­āļāļˆāļēāļāļ™āļĩāđ‰ āļ­āļīāļ—āļ˜āļīāļžāļĨāļ‚āļ­āļ‡āļ„āļ§āļēāļĄāđ€āļĢāđ‡āļ§āļ­āļēāļāļēāļĻ āđāļĨāļ°āļ­āļąāļ•āļĢāļēāļāļēāļĢāļ„āļēāļĒāļ›āļĢāļ°āļˆāļļāļāđ‡āļ–āļđāļāđƒāļŠāđ‰āđƒāļ™āļāļēāļĢāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļĢāđˆāļ§āļĄāļ”āđ‰āļ§āļĒ āđ€āļžāļ·āđˆāļ­āļ„āļ§āļšāļ„āļļāļĄāđƒāļŦāđ‰āđ€āļ‹āļĨāļĨāđŒāđāļšāļ•āđ€āļ•āļ­āļĢāļĩāđˆāļ—āļģāļ‡āļēāļ™āļ­āļĒāļđāđˆāļ āļēāļĒāđƒāļ™āļŠāđˆāļ§āļ‡āļ­āļļāļ“āļŦāļ āļđāļĄāļīāļ—āļĩāđˆāđ€āļŦāļĄāļēāļ°āļŠāļĄ āļ‹āļķāđˆāļ‡āļĄāļĩāļ„āđˆāļēāđ„āļĄāđˆāđ€āļāļīāļ™ 40C āđ‚āļ”āļĒāđāļšāļšāļˆāļģāļĨāļ­āļ‡āļ„āļ§āļēāļĄāļĢāđ‰āļ­āļ™āļ—āļĩāđˆāđ€āļāļīāļ”āļ‚āļķāđ‰āļ™āđƒāļ™āđ€āļ‹āļĨāļĨāđŒāđāļšāļ•āđ€āļ•āļ­āļĢāļĩāđˆāļ–āļđāļāļˆāļģāļĨāļ­āļ‡āļ‚āļķāđ‰āļ™āđ‚āļ”āļĒāļ­āļēāļĻāļąāļĒāļ‚āđ‰āļ­āļĄāļđāļĨāļāļēāļĢāļ—āļ”āļŠāļ­āļšāđ€āļ‹āļĨāļĨāđŒāđāļšāļ•āđ€āļ•āļ­āļĢāļĩāđˆāļ āļēāļĒāđƒāļ•āđ‰āļ­āļļāļ“āļŦāļ āļđāļĄāļīāđāļ§āļ”āļĨāđ‰āļ­āļĄāļ•āđˆāļēāļ‡ āđ† āļˆāļēāļāļœāļĨāļāļēāļĢāļˆāļģāļĨāļ­āļ‡āļžāļšāļ§āđˆāļē āđ€āļĄāļ·āđˆāļ­āļ„āļ§āļēāļĄāđ€āļĢāđ‡āļ§āļ‚āļ­āļ‡āļ­āļēāļāļēāļĻāđ€āļžāļīāđˆāļĄāļ‚āļķāđ‰āļ™ āļŠāđˆāļ‡āļœāļĨāđƒāļŦāđ‰āļĢāļ°āļšāļšāļĢāļ°āļšāļēāļĒāļ„āļ§āļēāļĄāļĢāđ‰āļ­āļ™āļĄāļĩāļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļžāđ€āļžāļīāđˆāļĄāļ‚āļķāđ‰āļ™ āđ‚āļ”āļĒāļŠāļļāļ”āđāļšāļ•āđ€āļ•āļ­āļĢāļĩāđˆāļ—āļĩāđˆāļ—āļģāļ‡āļēāļ™āļ­āļĒāđˆāļēāļ‡āļ•āđˆāļ­āđ€āļ™āļ·āđˆāļ­āļ‡āļ āļēāļĒāđƒāļ•āđ‰āļ­āļąāļ•āļĢāļēāļāļēāļĢāļ„āļēāļĒāļ›āļĢāļ°āļˆāļļ 0.5C āļ­āļēāļˆāđ„āļĄāđˆāļˆāļģāđ€āļ›āđ‡āļ™āļ•āđ‰āļ­āļ‡āļžāļķāđˆāļ‡āļžāļēāļĢāļ°āļšāļšāļĢāļ°āļšāļēāļĒāļ„āļ§āļēāļĄāļĢāđ‰āļ­āļ™āļ”āđ‰āļ§āļĒāļ­āļēāļāļēāļĻāđāļšāļšāļšāļąāļ‡āļ„āļąāļš āđāļĨāļ°āđƒāļ™āļāļĢāļ“āļĩāļ—āļĩāđˆāļŠāļļāļ”āđāļšāļ•āđ€āļ•āļ­āļĢāļĩāđˆāļ—āļģāļ‡āļēāļ™āļ”āđ‰āļ§āļĒāļ­āļąāļ•āļĢāļēāļāļēāļĢāļ„āļēāļĒāļ›āļĢāļ°āļˆāļļ 1C āļāļēāļĢāļĢāļ°āļšāļēāļĒāļ„āļ§āļēāļĄāļĢāđ‰āļ­āļ™āļˆāļģāđ€āļ›āđ‡āļ™āļ•āđ‰āļ­āļ‡āļĄāļĩāļ„āļ§āļēāļĄāđ€āļĢāđ‡āļ§āļ‚āļ­āļ‡āļ­āļēāļāļēāļĻāļ­āļĒāđˆāļēāļ‡āļ™āđ‰āļ­āļĒ 1 m/s āđ€āļžāļ·āđˆāļ­āļ„āļ§āļšāļ„āļļāļĄāļ­āļļāļ“āļŦāļ āļđāļĄāļīāļ‚āļ­āļ‡āđ€āļ‹āļĨāļĨāđŒāđāļšāļ•āđ€āļ•āļ­āļĢāļĩāđˆāđƒāļŦāđ‰āļ­āļĒāļđāđˆāļ āļēāļĒāđƒāļ™āļŠāđˆāļ§āļ‡āļ—āļĩāđˆāļāļģāļŦāļ™āļ” āđāļ•āđˆāļĢāļ°āļšāļšāļˆāļąāļ”āļāļēāļĢāļ„āļ§āļēāļĄāļĢāđ‰āļ­āļ™āļ”āđ‰āļ§āļĒāļ­āļēāļāļēāļĻāđ„āļĄāđˆāļŠāļēāļĄāļēāļĢāļ–āļ„āļ§āļšāļ„āļļāļĄāļ­āļļāļ“āļŦāļ āļđāļĄāļīāļ‚āļ­āļ‡āđ€āļ‹āļĨāļĨāđŒāđāļšāļ•āđ€āļ•āļ­āļĢāļĩāđˆāđ„āļ”āđ‰āđƒāļ™āļāļĢāļ“āļĩāļ—āļĩāđˆāļĄāļĩāļāļēāļĢāļ„āļēāļĒāļ›āļĢāļ°āļˆāļļāļ­āļĒāđˆāļēāļ‡āļĢāļ§āļ”āđ€āļĢāđ‡āļ§ āļ™āļ­āļāļˆāļēāļāļ™āļĩāđ‰ āļāļēāļĢāļˆāļąāļ”āđ€āļĢāļĩāļĒāļ‡āđ€āļ‹āļĨāļĨāđŒāļ—āļĩāđˆāđ€āļŦāļĄāļēāļ°āļŠāļĄāļ—āļĩāđˆāļŠāļļāļ”āđƒāļ™āđāļ‡āđˆāļ‚āļ­āļ‡āļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļžāļāļēāļĢāļĢāļ°āļšāļēāļĒāļ„āļ§āļēāļĄāļĢāđ‰āļ­āļ™āļ„āļ·āļ­āļāļēāļĢāļˆāļąāļ”āđ€āļĢāļĩāļĒāļ‡āđāļšāļšāđāļ™āļ§āđ€āļ”āļĩāļĒāļ§āļāļąāļ™ āđāļĨāļ°āļŠāđˆāļ­āļ‡āļ§āđˆāļēāļ‡āļ—āļĩāđˆāđ€āļŦāļĄāļēāļ°āļŠāļĄāļĢāļ°āļŦāļ§āđˆāļēāļ‡āđ€āļ‹āļĨāļĨāđŒāļ—āļĩāđˆāļ­āļĒāļđāđˆāļ•āļīāļ”āļāļąāļ™āļ„āļ·āļ­āļ›āļĢāļ°āļĄāļēāļ“ 1.5 āļĄāļĄ.Air-cooled thermal management system has been numerically studied due to low manufacturing cost, simple layout structure and high reliability of the system. A set of Lithium-ion battery pack 18650B consisting of 40 cells was investigated under different cell arrangement structures, i.e., inline, offset, and staggered configurations in order to evaluate their cooling performances. Additionally, the effects of inlet velocity and discharge rate were taken into consideration to guarantee the temperature of batteries in operation within an optimal range, i.e., not over 40 °C. The heat simulation model of battery cells was developed based on the data acquired from the test under various ambient temperatures. The simulation results revealed that the increased air velocity resulted in better cooling performance of the system. The continuously operating battery pack under the discharge rate of 0.5C may not rely on the forced air-cooling system. When the battery pack discharging of 1C-rate, it required at least the air velocity of 1 m/s for cooling the battery within the optimal working temperature range. However, the forced-air cooling strategy was unable to control the temperature of the battery cell in case of fast discharging rate. Furthermore, the best cell arrangement in terms of cooling performance is the inline configuration and the appropriate gap between adjacent cells is about 1.5 mm

    Experimental and numerical studies of one-directional and bi-directional flow conditions across tube banks heat exchanger

    No full text
    Bi-directional flow condition imposes different fluid dynamics and temperature changes compared to that of the usual one-directional flow condition. Bi-directional flow can be found in applications like thermoacoustic systems that offer a green technology for at least two major applications: refrigeration and power production. The technology is appealing as an alternative to traditional systems as it offers the replacement for the use of harmful working media and exhausted resources with the use of inert gaseous with relatively fewer moving mechanisms. As the fluid dynamics and heat transfer of bi-directional flow in a thermoacoustic working environment is less known, it is difficult to estimate losses and gain, especially during the design stage. This paper reveals the differences to be expected in the behaviour of flow and heat transfer through experimental as well as Computational Fluid Dynamics (CFD) results of one-directional and bi-directional flow conditions. Two different drivers were used to create the two different flow conditions: a loudspeaker for the bi-directional flow and a centrifugal blower for the one-directional flow. Both conditions were monitored based on flow amplitude that is calibrated between the two drivers. Results of velocity, temperature and, vorticity are recorded for Reynolds number that ranges between 270 and 1700. Analyses are supplemented with data from validated two-dimensional computational fluid dynamics models that were solved using the Shear-Stress-Transport (SST) k-ω turbulence model with second-order accuracy for all equations. Interesting features of differences in temperature and velocity changes between the one-directional and the bi-directional flows are reported. The temperature and velocity at upstream and downstream locations of the tube banks heat exchanger are almost the same for bi-directional cases but are significantly different when a one-directional flow is flowing over the heated tubes. In addition, the interplay between natural and forced convections is seen to affect the results that were recorded for the two flow conditions. The presence of thermally developing and fully developed regions is also discussed. The results indicate that the heat transfer behaviour of bi-directional flow is not the same as in the one-directional flow and the future calculation for heat transfer for bi-directional flow conditions of thermoacoustic must be carefully done with consideration of changes of flow conditions between the one-directional and the bi-directional flow conditions so that error could be minimized in the evaluation of the system’s performance
    corecore