592 research outputs found

    Electronic States of Graphene Grain Boundaries

    Get PDF
    We introduce a model for amorphous grain boundaries in graphene, and find that stable structures can exist along the boundary that are responsible for local density of states enhancements both at zero and finite (~0.5 eV) energies. Such zero energy peaks in particular were identified in STS measurements [J. \v{C}ervenka, M. I. Katsnelson, and C. F. J. Flipse, Nature Physics 5, 840 (2009)], but are not present in the simplest pentagon-heptagon dislocation array model [O. V. Yazyev and S. G. Louie, Physical Review B 81, 195420 (2010)]. We consider the low energy continuum theory of arrays of dislocations in graphene and show that it predicts localized zero energy states. Since the continuum theory is based on an idealized lattice scale physics it is a priori not literally applicable. However, we identify stable dislocation cores, different from the pentagon-heptagon pairs, that do carry zero energy states. These might be responsible for the enhanced magnetism seen experimentally at graphite grain boundaries.Comment: 10 pages, 4 figures, submitted to Physical Review

    Factorization in Formal Languages

    Get PDF
    We consider several novel aspects of unique factorization in formal languages. We reprove the familiar fact that the set uf(L) of words having unique factorization into elements of L is regular if L is regular, and from this deduce an quadratic upper and lower bound on the length of the shortest word not in uf(L). We observe that uf(L) need not be context-free if L is context-free. Next, we consider variations on unique factorization. We define a notion of "semi-unique" factorization, where every factorization has the same number of terms, and show that, if L is regular or even finite, the set of words having such a factorization need not be context-free. Finally, we consider additional variations, such as unique factorization "up to permutation" and "up to subset"

    Brane Solutions with/without Rotation in PP-wave Spacetime

    Full text link
    We present two classes of brane solutions in pp-wave spacetime. The first class of branes with a rotation parameter are constructed in an exact string background with NS-NS and R-R flux. The spacetime supersymmetry is analyzed by solving the standard Killing spinor equations and is shown to preserve the same amount of supersymmetry as the case without the rotation. This class of branes do not admit regular horizon. The second class of brane solutions are constructed by applying a null Melvin twist to the brane solutions of flat spacetime supergravity. These solutions admit regular horizon. We also comment on some thermodynamic properties of this class of solutions.Comment: 17 pages, added references, to be published in Nucl. Phys.
    corecore