2,402 research outputs found

    Approximation of quantum control correction scheme using deep neural networks

    Full text link
    We study the functional relationship between quantum control pulses in the idealized case and the pulses in the presence of an unwanted drift. We show that a class of artificial neural networks called LSTM is able to model this functional relationship with high efficiency, and hence the correction scheme required to counterbalance the effect of the drift. Our solution allows studying the mapping from quantum control pulses to system dynamics and then analysing the robustness of the latter against local variations in the control profile.Comment: 6 pages, 3 figures, Python code available upon request. arXiv admin note: text overlap with arXiv:1803.0516

    Influence of annealing parameters on the ferromagnetic properties of optimally passivated (Ga,Mn)As epilayers

    Full text link
    The influence of annealing parameters - temperature and time - on the magnetic properties of As-capped (Ga,Mn)As epitaxial thin films have been investigated. The dependence of the transition temperature (Tc) on annealing time marks out two regions. The Tc peak behavior, characteristic of the first region, is more pronounced for thick samples, while for the second (`saturated') region the effect of the annealing time is more pronounced for thin samples. A right choice of the passivation medium, growth conditions along with optimal annealing parameters routinely yield Tc-values of ~ 150 K and above, regardless of the thickness of the epilayers.Comment: 5 pages, 3 figure

    The slimming effect of advection on black-hole accretion flows

    Full text link
    At super-Eddington rates accretion flows onto black holes have been described as slim (aspect ratio H/R≲1H/R \lesssim 1) or thick (H/R >1) discs, also known as tori or (Polish) doughnuts. The relation between the two descriptions has never been established, but it was commonly believed that at sufficiently high accretion rates slim discs inflate, becoming thick. We wish to establish under what conditions slim accretion flows become thick. We use analytical equations, numerical 1+1 schemes, and numerical radiative MHD codes to describe and compare various accretion flow models at very high accretion rates.We find that the dominant effect of advection at high accretion rates precludes slim discs becoming thick. At super-Eddington rates accretion flows around black holes can always be considered slim rather than thick.Comment: 8 pages, 5 figures. Astronomy & Astrophysics, in pres

    Ferromagnetism and interlayer exchange coupling in short period (Ga,Mn)As/GaAs superlattices

    Full text link
    Magnetic properties of (Ga,Mn)As/GaAs superlattices are investigated. The structures contain magnetic (Ga,Mn)As layers, separated by thin layers of non-magnetic GaAs spacer. The short period Ga0.93_{0.93}Mn0.07_{0.07}As/GaAs superlattices exhibit a paramagnetic-to-ferromagnetic phase transition close to 60K, for thicknesses of (Ga,Mn)As down to 23 \AA. For Ga0.96_{0.96}Mn0.04_{0.04}As/GaAs superlattices of similar dimensions, the Curie temperature associated with the ferromagnetic transition is found to oscillate with the thickness of non magnetic spacer. The observed oscillations are related to an interlayer exchange interaction mediated by the polarized holes of the (Ga,Mn)As layers.Comment: REVTeX 4 style; 4 pages, 2 figure

    Magnetic properties of GaMnAs single layers and GaInMnAs superlattices investigated at low temperature and high magnetic field

    Full text link
    Magnetotransport properties of GaMnAs single layers and InGaMnAs/InGaAs superlattice structures were investigated at temperatures from 4 K to 300 K and magnetic fields up to 23 T to study the influence of carriers confinement through different structures. Both single layers and superlattice structures show paramagnetic-to-ferromagnetic phase transition. In GaMnAs/InGaAs superlattice beside the Curie temperature (Tc ~ 40 K), a new phase transition is observed close to 13 K.Comment: 8 pages, 5 figures, Proceedings of the XXXII International School on the Physics of Semiconducting Compounds, Jaszowiec 2003, Polan

    Cubic anisotropy in high homogeneity thin (Ga,Mn)As layers

    Full text link
    Historically, comprehensive studies of dilute ferromagnetic semiconductors, e.g., pp-type (Cd,Mn)Te and (Ga,Mn)As, paved the way for a quantitative theoretical description of effects associated with spin-orbit interactions in solids, such as crystalline magnetic anisotropy. In particular, the theory was successful in explaining {\em uniaxial} magnetic anisotropies associated with biaxial strain and non-random formation of magnetic dimers in epitaxial (Ga,Mn)As layers. However, the situation appears much less settled in the case of the {\em cubic} term: the theory predicts switchings of the easy axis between in-plane ⟨100⟩\langle 100\rangle and ⟨110⟩\langle 110\rangle directions as a function of the hole concentration, whereas only the ⟨100⟩\langle 100\rangle orientation has been found experimentally. Here, we report on the observation of such switchings by magnetization and ferromagnetic resonance studies on a series of high-crystalline quality (Ga,Mn)As films. We describe our findings by the mean-field pp-dd Zener model augmented with three new ingredients. The first one is a scattering broadening of the hole density of states, which reduces significantly the amplitude of the alternating carrier-induced contribution. This opens the way for the two other ingredients, namely the so-far disregarded single-ion magnetic anisotropy and disorder-driven non-uniformities of the carrier density, both favoring the ⟨100⟩\langle 100\rangle direction of the apparent easy axis. However, according to our results, when the disorder gets reduced a switching to the ⟨110⟩\langle 110\rangle orientation is possible in a certain temperature and hole concentration range.Comment: 12 pages, 9 figure

    GRMHD simulations of visibility amplitude variability for Event Horizon Telescope images of Sgr A*

    Full text link
    Synthesis imaging of the black hole in the center of the Milky Way, Sgr A*, with the Event Horizon Telescope (EHT) rests on the assumption of a stationary image. We explore the limitations of this assumption using high-cadence GRMHD simulations of Sgr A*. We employ analytic models that capture the basic characteristics of the images to understand the origin of the variability in the simulated visibility amplitudes. We find that, in all simulations, the visibility amplitudes for baselines oriented perpendicular to the spin axis of the black hole typically decrease smoothly over baseline lengths that are comparable to those of the EHT. On the other hand, the visibility amplitudes for baselines oriented parallel to the spin axis show significant structure with one or more minima. This suggests that fitting EHT observations with geometric models will lead to reasonably accurate determination of the orientation of the black-hole on the plane of the sky. However, in the disk-dominated models, the locations and depths of the minima in the visibility amplitudes depend primarily on the width and asymmetry of the crescent-like images and are highly variable. In the jet-dominated models, the locations of the minima are determined by the separation of the two image components but their depths depend primarily on the relative brightness of the two components and are also variable. This suggests that using time-independent models to infer additional black-hole parameters, such as the shadow size or the spin magnitude, will be severely affected by the variability of the accretion flow.Comment: replaced to match published version, new figure added, results unchange
    • …
    corecore